Lecture 15: Derived & Lower central series, Solvable & Nilpotent groups II (150) Recall : given & we define 2 descending series ; with $b'(G) = G \approx b^{j+1}(G) = [b^{j}(G), b^{j}(G)] \quad \forall j \ge 0.$ (c) $\overset{\circ}{\mu}$ $G = C'(G) \sim C^{2}(G) = [G:G] \sim C^{3}(G) = [G:C^{2}(G)] \sim \dots$ with $C'(G) = G = C^{3+1}(G) = [G:C^{3}(G)] \quad \forall i \ge 0$ with $C'(G) = G = C^{j+1}(G) = [G: C^{j}(G)]$ $\forall j \ge 0$. Ky Troperty: $D^{j}(G) \subseteq C^{2^{j}}(G) \land C^{j+1}(G) \land G \lor_{(G)} \mathrel_{(G)} \mathrel_{(G)$ Def: A group G is solvable if D is a companies (D'[G]=ter for . <u>nilpstent</u> G (Cⁿ(G)=set for som n) Proposition All niljotent proups are solvable; but by is solvable & not niljotent Ex: G abelian is nilpotent and solvable . Sn not solvable for n35. (Anis simple & un abelian for n35) . Dn is solvable the but nilpstent uly if n=2k for some k 31. Testing solvability/ nilpstency via composition series: Thurem1: G is solvable >> I comp series [with abelian graded pieces. Thursem 2. G is nilprent if and may if it has a compraition series Σ : $G = G_0 \ge G_1 \ge \cdots \ge G_n = 3e_1$ with (1) $q_{j}^{\xi}(G) = G_{j}$ is abelian $\forall j=0,...,n-1$ (2) $[G, G_{j}] \subset G_{j+1} \quad \forall j=0,...,n-1$ Note: (2) \Rightarrow (1) nince $[G_{j}, G_{j}] \subset G_{j+1}$ Proof (Thm1). (=>>) Easy since D is a companies of G with abelian enaded pieces.

(=) White the comparison series
$$\mathbb{Z}$$
 on $\mathbb{G} = \mathbb{G} \circ \mathbb{Q} \subset \mathbb{Q}$, $\mathbb{Q} \to \mathbb{Q} = \mathbb{Q} \subset \mathbb{Q}$
We will show $D^{3}(G) \subseteq G_{j}$ by subjust induction m_{j} . In particular
 $D^{n}(G) \subseteq \mathbb{Q} \in \mathbb{Y}$ so $D^{n}(G) = \mathbb{Q} \in \mathbb{Q} \subset \mathbb{Q}$.
Base case: $j=0$ is char since $D^{0}(G) = \mathbb{Q} = \mathbb{Q} \circ$.
Inductive Step: Assume $D^{0}(G) = \mathbb{Q} \subseteq \mathbb{Q} = \mathbb{Q}$.
Inductive Step: Assume $D^{0}(G) \subseteq \mathbb{Q} \subseteq \mathbb{Q}_{j+1}$, so we wonted []
 $\mathbb{P}^{1}(G) = D^{1}(\mathbb{Q}(G)) \subseteq D^{1}(G_{j}) \subseteq \mathbb{Q}_{j+1}$, so we wonted []
 $\mathbb{P}^{1}(G) = D^{1}(\mathbb{Q}(G)) \subseteq D^{1}(G_{j}) \subseteq \mathbb{Q}_{j+1}$, so we wonted []
 $\mathbb{P}^{1}(G) = D^{1}(\mathbb{Q}(G)) \subseteq D^{1}(G_{j}) \subseteq \mathbb{Q}_{j+1}$, so we wonted []
 $\mathbb{P}^{1}(G) = D^{1}(\mathbb{Q}(G)) \subseteq D^{1}(G_{j}) \subseteq \mathbb{Q}_{j+1}$, so we wonted []
 $\mathbb{P}^{1}(G) = \mathbb{P}^{1}(\mathbb{Q}(G)) \subseteq \mathbb{Q}^{1}(G_{j}) \subseteq \mathbb{Q}_{j+1}$, so we wonted []
 $\mathbb{P}^{1}(G) = \mathbb{P}^{1}(\mathbb{Q}(G)) \subseteq \mathbb{Q}^{1}(G_{j}) \subseteq \mathbb{Q}_{j}$, $\mathbb{Q}_{j} = \mathbb{Q}_{j+1}$, $\mathbb{Q}_{j} = \mathbb{Q}_{j}$.
(E) It's enough to check that $\mathbb{C}^{1+1}(G) \subseteq G_{j}$ $\mathbb{Q}_{j} = \mathbb{Q}_{j+1}$ by \mathbb{Q}_{j} .
 $\mathbb{P}^{1}(G) = \mathbb{P}^{1}(\mathbb{C}^{1}(G)] \subseteq \mathbb{Q} = \mathbb{Q}_{j} = \mathbb{Q}_{j}$.
 $\mathbb{P}^{1}(G) = \mathbb{Q}^{1}(\mathbb{C}^{1}(G)] \subseteq \mathbb{Q} = \mathbb{Q}_{j} = \mathbb{Q}_{j+1}$ by \mathbb{Q}_{j} .
 $\mathbb{Q} = \mathbb{Q}^{1+1}(G) = \mathbb{Q} = \mathbb{Q}_{j} = \mathbb{Q}^{1+1}(G) \subseteq \mathbb{Q}_{j}$ ($\mathbb{P}^{1} \subseteq \mathbb{Q}_{j} = \mathbb{Q}_{j+1}$ by \mathbb{Q}_{j} .
 $\mathbb{Q} = \mathbb{Q}^{1+1}(G)$, $\mathbb{Q} = \mathbb{Q}^{1}(G) \subseteq \mathbb{Q} \subseteq \mathbb{Q}^{1}(G) \subseteq \mathbb{Q}_{j} = \mathbb{Q}_{j+1}$ by \mathbb{Q}_{j} .
 $\mathbb{Q} = \mathbb{Q}^{1+1}(G)$, then $\mathbb{Q}^{1}(G) \cong \mathbb{Q} \subseteq \mathbb{Q}^{1}(G) \cong \mathbb{Q}^{1}(G) = \mathbb{Q}^{1}(G) = \mathbb{Q}_{j}$.
 $\mathbb{Q} = \mathbb{Q}^{1+1}(G)$, $\mathbb{Q} = \mathbb{Q}^{1}(G) \cong \mathbb{Q} \subseteq \mathbb{Q}^{1}(G) = \mathbb{Q}^{1}(G) = \mathbb{Q}_{j}$.
 $\mathbb{Q} = \mathbb{Q}^{1+1}(G)$, $\mathbb{Q} = \mathbb{Q}^{1}(G) \cong \mathbb{Q} \subseteq \mathbb{Q}^{1}(G) = \mathbb{Q}^{1}(G$

[Same proof as for solvable groups] @Gisnilpotent if and may if there is a subgroup ACZ(G) with G/A nilpotent.

Such of (2) We only used to show (~). (ander t: G - G/A
(A < G became A < Z(G)) fick a with
$$C^{n}(G/A) = \frac{1}{2}e_{F}$$

(laim: $T(C^{n}(G)) = C^{k}(G_{A})$ for k = 1,...,n
Proof Ry induction in k.
• k=1. $T(C^{1}(G)) = T(G) = G_{A} = C^{1}(G_{A})$
• laterity Step: $C^{k+1}(G) = [G: C^{k}(G_{A})] = 0$
 $T(C^{k+1}(G_{A})) = [T(C)(G_{A})] = [G: C^{k}(G_{A})] = C^{k+1}(G_{A})$. In
particular, $T(C^{n}(G)) = C^{n}(G/A) = \frac{1}{2}e_{F}$.
By $A < Z(G)$ so $C^{n+1}(G) \in [G: A] = \frac{1}{2}e_{F}$.
M The last stational fields if A is not included in $Z(G_{A})$,
is if $A - G_{1} - G_{2} - G_{3} - 31$ sets , thus
 G_{1}, G_{3} milpitud $\Rightarrow G_{2}$ is milpitud.
Example: $G_{2} = \int [a + b] = a + C = G_{4}$
 $G_{4} = \int [a + b] = a + C = G_{4}$
 $G_{4} = \int [a + b] = a + C = G_{4}$
 $G_{4} = \int [a + b] = a + C = G_{5}$
 $G_{4} = (a + b) = \nabla (a + b) = a + C = G_{5}$
 $G_{4} = (a + b) = \nabla (a + b) = a + C = G_{5}$
 $G_{4} = (a + b) = \nabla (a + b) = a + C = G_{5}$
 $G_{4} = (a + b) = \nabla (a + b) = a + C = G_{5}$
 $G_{4} = (a + b) = \nabla (a + b) = a + C = G_{5}$
 $G_{4} = (a + b) = \nabla (a + b) = a + C = G_{5}$
 $G_{4} = (a + b) = \nabla (a + b) = a + C = G_{5}$
 $G_{4} = (a + b) = \nabla (a + b) = a + C = G_{6}$
 $G_{4} = (a + b) = a + C = (a + b) = a + C = G_{6}$
 $G_{4} = (a + b) = a + C = (a + b) = a + C = G_{6}$
 $G_{5} = (a + b) = b + b + b + b + b + b = C = G_{6}$
 $G_{5} = (a + b) = b + b + b + b + b + b = C = G_{6}$
 $G_{5} = (a + b) = a + b = C = G_{6}$
 $G_{6} = G_{6} = [a + b]$
 $We have Z(G) = f = c = Z(G) = e^{F}$
 $F = (a + b) = C = (a + b) = (a + b) = (a + b) = (a + b) = C = G_{6} = 1 + c = G_{6}$
 $F = (a + b) = (a$

(NSET IF G = Z(G), then G is a belian, hence uitpitent.
(NSEE IF G = Z(G), then by inductive hypothesis: Z(G) in mitpited
a |
$$G_{Z(G)}| = p^{K-S}$$
 k-S < k, so also uitpited.
By Propriatin 2, G is nitpited, source an direct products of p-groups
There precisely, given a finite source and direct products of p-groups
There precisely, given a finite source and direct products of p-groups
There precisely, given a finite source of p-groups.
(2) G is a direct product of p-groups.
Proof: (1) => (2) Teck. H a p-sylaw subgroup of G. If H = G,
then H < G. Otherwise we have H ≤ G.
(laim: N_G(H) = G (normalized of H is the whole group G)
By Lemma 2 below we have H ≤ G.
(laim: N_G(H) = G (normalized of H is the whole group G)
By Lemma 2 below we have H ≤ N_G(H). To prove the claim, we argue
by catacdiction a assume N_G(H) ≤ G. Thun, the same lemma applied
to H' = N_G(H) given H' ≤ N_G(H') = N_g(N_G(H))
. We show that $H < N_G (N_G(H))$ which will head to a catacdiction
namely N_G(N_G(H)) ≤ N_G(H) = H' & H' ≤ N_G(N_G(H)).
To prove H < N_G(N_G(H)) , we argue by exploiting the fait that H is
a p-Sylaw group of both G & N_G(H). (1H1) 1N_G(H) a 1H111G1 so
IG(R 1N_G(K)) involve thereare power of p, normaly 1H1)
Some obscirution:
O H < N_G(H) so H is the unique p-Sylaw subgroup of N_G(H)
(a) if helf a g ∈ N_G(N_G(H)), we have g hg⁻¹ ∈ N_G(H)
N_{G(H)}

Bet redulg hg⁻¹) = order (h) is a prover of p. so it's intermed in the the maps p-sylaw group H.
Include ghg'
$$\in$$
 H \forall g \in NG(NG(H)) so NG(NG(H)) \in NG(H).
Since NG(H) \in NG(NG(H)) we get equality so
H \triangleleft NG(H) = NG(NG(H)).
(2) \Rightarrow (3): We write $|G| = p_1^{r_1} \cdots p_s^{r_s}$
Rick H₁,..., H_s the corresponding unique p-sylaw subgroups of G.
We claim $G \simeq H_1 \times \cdots \times H_s$ by induction ms.
. Trinst, notice that with groups have the same order since all pi's
are pointies coprime.
. Second, robite that H_s \triangleleft G a by induction ms, we get
H = H₁....H_{s-1} < G (general kinim of 3rd Iso Theorem)
Furthermore, H \simeq H₁ ××H_{s-1} (by induction on s since
tech H₁ is normal in H).
. This gives $|H| = \frac{|G|}{P_s^{r_s}}$ so $H\cap H_s = \lambda e \&$ (sige are
coprime !)
. To finish, we show $H \triangleleft G$. This follows by a direct computation,
since all H₁,..., H_{s-1} \triangleleft G (for each h₁ \in H₁...H_{s-1}=H)
. The second in H.

G ~ H × Hs ~ H, × -- × Hs & each Hi is a g-group. (3) => (1) Show that a direct product of nilpotents is nilpotent.

List
King ettips fr. Heis purf:
() Lemmal (HWS) If N, N₂ a G & (G:N,)
$$CN_2 CN_1$$
, Hun
We have N₂H dN_1 H fradl H\leq G. Then:
H \leq N_G(H):=1 se6: sHg⁻¹=HJ.
Scool: Since G is milpitent, the lower entrol series satisfies.
G = G_0 2 G, 2 $2G_n = 1eF$
with [G, Gj] C Gj+1. \leq Gj dG HJ.
Since [G, Gj] C Gj+1. \leq Gj dG HJ.
Since [G, Gj] C Gj+1 C Gj then Gj+1 H dG_1 H HJ by lumes
We get G = G_0H \geq G₁H \geq \geq GmH = H.
Tix L to be the largest index with G_R H $\stackrel{>}{\Rightarrow}$ G_{R+1} H = H
Then H \leq G_KH and hence N_GH \geq G_KH \neq H as we wanted.
(crollary: We understand Jridan-Hölder series of finite nilpotent groups
(Concatenated JH series of each p-group appropriately)