Lecture 15: Derived & lower central series, Solvable & Nilpotent groups II

Recall: Given G we define a descending series:

1. $D^0(G) > D^1(G) = [G:G] > D^2 = D^1(D(G)) > \ldots$
 with $D^0(G) = G$ and $D^{j+1}(G) = [D^j(G):D^j(G)] \forall j \geq 0$.

2. $G = C^1(G) > C^2(G) = [G:G] > C^3 = [G:C^2(G)] > \ldots$
 with $C^1(G) = G$ and $C^{j+1}(G) = [G:C^j(G)] \forall j \geq 0$.

Key Property: $D^j(G) \leq C^{k_j}(G)$ and $C^{j+1}(G)/D^j(G) \cong G$ \forall j.

Def.: A group G is solvable if \mathfrak{D} is a comp series ($D^n(G) = \{e\}$ for some n).

\text{nilpotent} \quad \mathfrak{D} \quad \text{solvable} \quad (C^n(G) = \{e\} \text{ for some } n)

Proposition: All nilpotent groups are solvable; but D_3 is solvable but not nilpotent.

Ex.: G abelian is nilpotent and solvable.

A_n not solvable for $n \geq 5$. (All n is simple & non-abelian for $n \geq 5$)

D_n is solvable but not nilpotent only if $n = 2^k$ for some k.

3.1. Testing solvability/nilpotency via composition series:

Theorem 1: G is solvable \iff \exists comp series Σ with abelian graded pieces.

Theorem 2: G is nilpotent if and only if it has a composition series

$\Sigma: G = G_0 \geq G_1 \geq \ldots \geq G_n = \{e\}$

with (1) $G_j/G_j \cong \{e\}$ is abelian $\forall j = 0, \ldots, n-1$

(2) $[G_j, G_{j+1}] \leq G_{j+1}$ $\forall j = 0, \ldots, n-1$.

Note: (2) \Rightarrow (1) since $[G_j, G_{j+1}] \leq G_{j+1}$.

Proof (Thm 1). (\Rightarrow) Easy since \mathfrak{D} is a comp series of G with abelian graded pieces.
Write the composition series Σ as: $G = G_0 \triangleright G_1 \triangleright \ldots \triangleright G_n = 1_{\text{trivial}}$

We will show $D^j(G) \subseteq G_j \forall j \in \mathbb{N}$ by induction on j. In particular $D^n(G) \subseteq 1_{\text{trivial}}$, so $D^n(G) = 1_{\text{trivial}}$ and G is solvable.

Base case: $j = 0$ is clear since $D^0(G) = G = G_0$.

Inductive step: Assume $D^j(G) \subseteq G_j \forall j < n$. Since G_j / G_{j+1} is abelian, then $D'(G_j / G_{j+1}) = [G_j : G_{j+1}] \subseteq G_{j+1}$, so $D^{j+1}(G) = D'(D^j(G)) \subseteq D'(G_j) \subseteq G_{j+1}$, as we wanted.

\Box

Proof of Thm 2: (\Rightarrow) Easy since G is a camp series of G with the desired properties by construction + (\Leftarrow) ⇒ (\Rightarrow).

\Leftarrow It's enough to check that $C^{j+1}(G) \subseteq G_j \forall j = 0, \ldots, n$.

(If so, then $C^{j+1}(G) \subseteq G_n = 1_{\text{trivial}}$)

The claim follows by induction on j.

Base case: $j = 0$.

Inductive step: Fix $j > 0$ and assume $C^{j+1}(G) \subseteq G_j \forall j < n$.

$C^{j+2}(G) = [G : C^{j+1}(G)] \subseteq [G : G_j] \subseteq G_{j+1}$ by (2).

Theorem 2. Sub- & quotients:

Q: What happens to sub- & quotient objects? Equivalently, to ses?

Obs: If $H < G$, then $D^j(H) \subseteq D^j(G)$ & $C^{j+1}(H) \subseteq C^{j+1}(G) \forall j > 0$.

Proposition 1. Let G be a group & $N < G$. Then, G is solvable if, and only if, N & G/N are.

Equivalent statement. 1 $\longrightarrow G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow \ldots$ ses.

Then G_2 is solvable $\iff G_1$ & G_3 are solvable.
Example. \(G = D_n, \ N = \langle e \rangle < G \) & \(G/N \cong \mathbb{Z}/2 \mathbb{Z} \) both solvable, so \(D_n \) is solvable.

Proof: (\(\Rightarrow \)) First assume \(G \) is solvable & pick \(n > 0 \) with \(D^n(G) = 3G \).
Then \(D^n(N) \leq D^n(G) = 3G \Rightarrow N \) is solvable.

If \(\Pi : G \to G/N \) is the natural projection, then:
\[
\Pi(D(G)) = [G : G] = [\Pi(G) : \Pi(G)] = D\left(G/N\right)
\]
The same argument yields \(\Pi(D^{n'}(G)) = D\left(D^n(G/N)\right) = D^{n'}(G/N) \)
So \(D^n(G/N) = [\Pi(G) : \Pi(G)] = 3G \), thus \(G/N \) is solvable.

(\(\Leftarrow \)) Now, assume \(N \) & \(G/N \) are solvable. By Theorem 1 we have composition series for \(N \) & \(G/N \) with abelian graded pieces
\[
\Sigma: \ N = N_0 \supseteq N_1 \supseteq \ldots \supseteq N_k = \{e\} \quad N_i \text{ abelian } \forall i = 0, \ldots, k-1.
\]
\[
\Sigma': \ G_j = \bar{G}_0 \supseteq \bar{G}_1 \supseteq \ldots \supseteq \bar{G}_s = 3G_{j+1}\}
\]
Set \(\Pi: G \to G/N \) & \(G_j = \Pi^{-1}(\bar{G}_j) \) \(\forall j = 0, \ldots, s \).
So \(G_s = N \), \(G_0 = G \), \(G_{j+1} \triangleleft G_j \) \(\forall j \) & \(G_j/G_{j+1} \sim \bar{G}_j \) abelian.

Set \(G_i = N_i \) \(\forall i = 1, \ldots, k \). Then:
\[
\Sigma'': G = G_0 \supseteq G_1 \supseteq \ldots \supseteq G_s = N \supseteq G_{s+1} \supseteq \ldots \supseteq G_{s+k} = 3G \}
\]
is aComposition series for \(G \) with abelian graded pieces. By Thm 1, \(G \) is solvable.

Proposition 2:
1. Subgroups & quotients of nilpotent groups are nilpotent.
 [Same proof as for solvable groups.]
2. \(G \) is nilpotent if & only if there is a subgroup \(A \triangleleft Z(G) \) with \(G/A \) nilpotent.
Proof of (2). We only need to show \((\Leftarrow)\). Consider \(\tilde{\pi}: G \rightarrow G/A\)
(A \not\subseteq G because \(A \subset Z(G)\)) pick \(n\) with \(C^n(G/A) = 1\).

Claim: \(\tilde{\pi}(C^k(G)) = C^k(G/A)\) for \(k = 1, \ldots, n\).

Proof: By induction in \(k\).

- \(k=1\): \(\tilde{\pi}(C^1(G)) = \tilde{\pi}(G) = G/A = C^1(G/A)\)
- Inductive Step: \(\tilde{\pi}(C^{k+1}(G)) = \tilde{\pi}(C^k(G) \cdot C^k(G)) = \tilde{\pi}(C^k(G)) \cdot \tilde{\pi}(C^k(G)) = C^{k+1}(G/A)\).

In particular, \(\tilde{\pi}(C^n(G)) = C^n(G/A) = 1\) \(\Rightarrow\) \(C^n(G) \subseteq A\)

By \(ACZ(G)\) so \(C^{n+1}(G) \subseteq [G:A] = 1\).

⚠️ The last statement fails if \(A\) is not included in \(Z(G)\), i.e., if \(A \rightarrow G_1 \rightarrow G_2 \rightarrow G_3 \rightarrow \ast\) is a sequence, then

- \(G_1, G_3\) nilpotent \(\Rightarrow\) \(G_2\) is nilpotent.

Example: \(G_2 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, d \in \mathbb{C}, b \in \mathbb{C} \right\}\)
(see HW5) \(\nabla\) (direct computation)

\[G_1 = \left\{ \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} : x \in \mathbb{C} \right\} \approx \mathbb{C} \]

\[G_2/G_1 = \mathbb{C} \times \mathbb{C} \] (diagonal entries)

- \(G_1\) & \(G_2/G_1\) are nilpotent (they are abelian!)
- \(G_2\) is solvable but not nilpotent

Corollary: Every \(p\)-group is nilpotent, and thus solvable

Proof: By induction in \(k\) with \(|G| = p^k\).

- \(k=1\): \(G = \mathbb{Z}/p\mathbb{Z}\) is abelian, hence nilpotent
- Inductive Step: \(C^2(G) = [G:G] = \{e\}\)

We know \(Z(G) \neq \{e\}\) so \(Z(G) = p^s\) \(1 \leq s \leq k\).
Case 1: If \(G = Z(G) \), then \(G \) is abelian, hence nilpotent.

Case 2: If \(s < k \), then by inductive hypothesis, \(Z(G) \) is nilpotent and \(\frac{|G|}{|Z(G)|} = p^k \). Thus \(s < k \), so also nilpotent.

By Proposition 2, \(G \) is nilpotent.

Theorem: Only finite nilpotent groups are direct products of \(p \)-groups. More precisely, given a finite group \(G \), the following statements are equivalent:

1. \(G \) is nilpotent
2. Every \(p \)-Sylow subgroup of \(G \) is normal
3. \(G \) is a direct product of \(p \)-groups.

Proof: \((1) \Rightarrow (2)\) Pick \(H \) a \(p \)-Sylow subgroup of \(G \). If \(H = G \), then \(H \triangleleft G \). Otherwise we have \(H \leq G \).

Claim: \(N_G(H) = G \) (normalizer of \(H \) is the whole group \(G \))

By Lemma 2 below, we have \(H \not\triangleleft N_G(H) \). To prove the claim, we argue by contradiction & assume \(N_G(H) \not\triangleleft G \). Then, the same lemma applied to \(H' = N_G(H) \) gives \(H' \not\triangleleft N_G(H') = N_G(N_G(H)) \).

We show that \(H \not\triangleleft N_G(N_G(H)) \) which will lead to a contradiction, namely \(N_G(N_G(H)) \leq N_G(H) = H' \) & \(H' \not\triangleleft N_G(N_G(H)) \).

To prove \(H \not\triangleleft N_G(N_G(H)) \), we argue by exploiting the fact that \(H \) is a \(p \)-Sylow group of both \(G \) & \(N_G(H) \). (\(|H||N_G(H)| \leq |H||G| \), so \(|G| \text{ } \& \text{ } |N_G(H)| \) involve the same power of \(p \), namely \(|H| \))

Some observations:

1. \(H \not\triangleleft N_G(H) \) so \(H \) is the unique \(p \)-Sylow subgroup of \(N_G(H) \)
2. If \(h \in H \) & \(g \in N_G(N_G(H)) \), we have \(ghg^{-1} \in N_G(H) \)

Some observations:
But \(\text{ord}(g h g^{-1}) = \text{ord}(h) \) is a power of \(p \) so it's contained in the unique \(p \)-Sylow group \(H \).

Conclude \(g h g^{-1} \in H \) \forall \(g \in N_G(N_G(H)) \) so \(N_G(N_G(H)) \leq N_G(H) \).

Since \(N_G(H) \leq N_G(N_G(H)) \) we get equality so \(H \triangleleft N_G(H) = N_G(N_G(H)) \).

(2) \(\Rightarrow \) (3): We write \(|G| = p_1^{e_1} \cdots p_s^{e_s} \).

Pick \(H_1, \ldots, H_s \) the corresponding unique \(p_i \)-sylow subgroups of \(G \).

We claim \(G \cong H_1 \times \cdots \times H_s \) by induction on \(s \).

First, notice that both groups have the same order since all \(p_i \)'s are pairwise coprime.

Second, notice that \(H_s \triangleleft G \) & by induction on \(s \), we get
\[
H = H_1 \cdots H_{s-1} < G \quad \text{(general version of 3rd Iso Theorem)}
\]
Furthermore, \(H \cong H_1 \times \cdots \times H_{s-1} \) (by induction on \(s \) since each \(H_i \) is normal in \(H \)).

This gives \(|H| = \frac{|G|}{p_s^{e_s}} \) so \(H \cap H_s = \{e\} \) (sizes are coprime!)

To finish, we show \(H \triangleleft G \). This follows by a direct computation since all \(H_1, \ldots, H_{s-1} \triangleleft G \). (For each \(h_i \in H_i \) & \(g \in G \) we have
\[
(g_1 \cdots g_{s-1} g^{-1}) = (g_1 h_1 g')(g_2 h_2 g'') \cdots (g_{s-1} h_{s-1} g') \in H_1 \cdots H_{s-1} = H
\]

Typical element in \(H \).

Then, we have \(H, H_s \triangleleft G \), \(H \cap H_s = \{e\} \) & \(|H H_s| = |G| \), so \(H H_s = G \). This is the definition of direct product.

\(G \cong H \times H_s \cong H_1 \times \cdots \times H_s \) & each \(H_i \) is a \(p_i \)-group.

(3) \(\Rightarrow \) (1) Show that a direct product of nilpotent is nilpotent.
Key steps in this proof:

1. **Lemma 1 (HW5)** If \(N_{1}, N_{2} \triangleleft G \triangleleft (G: N_{1}) \triangleleft N_{2} \triangleleft G \), then we have \(N_{2} \triangleleft H \triangleleft N_{1} \) for all \(H \triangleleft G \).

2. **Lemma 2.** Let \(G \) be a nilpotent group and \(H \triangleleft G \). Then:
 \[
 H \triangleleft N_{G}(H) := \{ g \in G : gHg^{-1} = H \}.
 \]

 Proof: Since \(G \) is nilpotent, the lower central series satisfies,
 \[
 G = G_{0} \triangleright G_{1} \triangleright \ldots \triangleright G_{n} = \{e\}
 \]
 with \([G, G_{j}] \triangleleft G_{j+1} \triangleleft G_{j} \triangleleft G \) \(\forall j \).

 Since \([G, G_{j}] \triangleleft G_{j+1} \triangleleft G_{j} \) then \(G_{j+1} \triangleleft G_{j} \) \(\forall j \) by Lemma 1.

 We get \(G = G_{0}H \triangleright G_{1}H \triangleright \ldots \triangleright G_{n}H = H \).

 Fix \(k \) to be the largest index with \(G_{k}H \triangleright G_{k+1}H = H \).

 Then \(H \triangleleft G_{k}H \) and hence \(N_{G_{k}}H \triangleleft G_{k}H \neq H \) as we wanted.

Corollary: We understand Jordan-Hölder series of finite nilpotent groups. (Concatenated JH series of each \(p \)-group appropriately.)