162 2 Polynmial Rings over R Given R ring × minuble, $R(x] = \{\sum_{j=0}^{N} a_j \times x^j a_j \in \mathbb{R} \ N \ge 0\}$ is a ring : • Addition : componenturise (degree-by-degree) $\sum_{j=0}^{N} a_j X^j + \sum_{k=0}^{M} b_k X^k = \sum_{j=0}^{mex} (a_j+b_j) X^j$ where $a_j = 0$ for $N < j \leq mox(N, H)$. • <u>Multiplication</u>: $(\sum_{j=0}^{M} a_j \times j)(\sum_{k=0}^{N} b_k \times k) = \sum_{l=0}^{M+N} \sum_{i+j=l}^{(A_i \cup_{l-i})} x^l$ with the understanding that az=0 Vi>M & bk=0 VK>N (this rule is imposed by distributive property & definition of +) Inductively $R[x_1, \dots, x_n] = R[x_1, \dots, x_{n-1}][x_n]$ welficient ring ζ Σ a_d <u>x</u>^d } den finite $\underline{X}^{\alpha} = X_1^{\alpha_1} \times z^{\alpha_2} \cdots \times z^{\alpha_n}$ deque $(X^{d}) = |d| = d_1 + \cdots + d_n$ \$2. Some important types of rings: Let R be a ring. Det : Ris said to be <u>commutative</u> it ab=ba ta, beR. 2 R is said to be a division ring (IT skew-field) if R=R-308 (3) R is a field if it is a commutative, division ring. (3) R is an integral domain if R is commutative & $\forall a, b: ab=0 \implies a=0 \ \pi \ b=0.$ [In general, if for a Risol there is L=0 in R with ab=0 we say a is a zuro divisor Integral demain = commutation +]

(b) For
$$R[x] = \int \sum_{i=1}^{n} f_i g_i$$
 $f_i \in R[x] f = \langle g_1, \dots, g_n \rangle$
is a lift ideal of $R[x]$ (generated by $g_1, \dots, g_n \rangle$.
(a) $M_{\mathbb{C}}^{\mathbb{C}}$ Upper Triangular 2x2 matrices $/\mathbb{C} = \{\begin{bmatrix} a & b \end{bmatrix} \ a, b, d \in \mathbb{C}\}$
. \mathcal{A} is not a lift ideal
 $\begin{pmatrix} i & i \end{pmatrix} \begin{pmatrix} i & i \\ 0 & i \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \notin \mathcal{A}$
 $\in \mathcal{A}$
. \mathcal{A} is not a right ideal:
 $\begin{pmatrix} i & i \end{pmatrix} \begin{pmatrix} i & i \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \notin \mathcal{A}$
 $\in \mathcal{A}$
. \mathcal{A} is not a right ideal:
 $\begin{pmatrix} i & i \end{pmatrix} \begin{pmatrix} i & i \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix} \notin \mathcal{A}$
 $\in \mathcal{A}$
Lemma IF $\{\mathcal{A}_i\}_{i \in J}$ is a set of ideals of a ring R, then
so is $\int \mathcal{A}_i$ (fimiliar results hold for lift \mathcal{T} right ideals)
 \mathcal{H} Enough to check it's a group, cloud under lift $/\mathcal{T}$ right
multiplication by elements of R.
 \mathbb{B}
 \mathcal{B} quotient Rings
Let R be a ring & $\mathcal{A} \subset \mathbb{R}$ be an ideal. We consider the
set $\mathcal{F}_{\mathcal{A}}$ (neurod as a quotient of groups) with inherited of pstantage
We indow this set with a multiplication:
 $(a + \mathcal{A})$ $(b + \mathcal{A}) = ab + \mathcal{A}$
 \mathcal{O} by: This is well-defined:
If $a + \mathcal{A} = a' + \mathcal{A}$, meaning $(a'-a) \in \mathcal{A}$, so $a'=a+x''$
 $b + \mathcal{A} = b' + \mathcal{A}$, $- (b'-b) \in \mathcal{A}$ so $b'=b+y$ for

$$= x a'b' = (a+x)(b+y) = (ab) + xb + ay + xy$$

$$\begin{array}{c} & & & \\ & &$$

$$\begin{array}{rcl} \underbrace{\Im}_{\mathcal{A}} & \widehat{\mathcal{A}} & \text{ with } + & & & as defined above is a ring, called \\ \underbrace{\Im}_{\mathcal{A}} & \underbrace{\operatorname{ring}}_{\mathcal{A}} & \underbrace{\operatorname{ring}}_{\mathcal{A}} & \underbrace{\operatorname{ring}}_{\mathcal{A}} & & & & \\ \underbrace{\Im}_{\mathcal{R}/\mathcal{A}} & = & \underbrace{O + \mathcal{A}} & & & & \\ \underbrace{\Im}_{\mathcal{R}/\mathcal{A}} & = & \underbrace{O + \mathcal{A}} & & & & \\ \underbrace{\Im}_{\mathcal{R}/\mathcal{A}} & = & \underbrace{O + \mathcal{A}} & & & & \\ \underbrace{\Im}_{\mathcal{R}/\mathcal{A}} & = & \underbrace{O + \mathcal{A}} & & & \\ \underbrace{\Im}_{\mathcal{R}/\mathcal{A}} & = & \underbrace{O + \mathcal{A}} & & & \\ \underbrace{\Im}_{\mathcal{R}/\mathcal{A}} & = & \underbrace{O + \mathcal{A}} & & & \\ \underbrace{\Im}_{\mathcal{R}/\mathcal{A}} & = & \underbrace{O + \mathcal{A}} & & & \\ \underbrace{\Im}_{\mathcal{R}/\mathcal{A}} & = & \underbrace{O + \mathcal{A}} & & & \\ \underbrace{\Im}_{\mathcal{R}/\mathcal{A}} & = & \underbrace{O + \mathcal{A}} & & & \\ \underbrace{\Im}_{\mathcal{R}/\mathcal{A}} & = & \underbrace{O + \mathcal{A}} & & & \\ \underbrace{\Im}_{\mathcal{R}/\mathcal{A}} & = & \underbrace{O + \mathcal{A}} & & & \\ \underbrace{\Im}_{\mathcal{R}/\mathcal{A}} & = & \underbrace{O + \mathcal{A}} & & & \\ \underbrace{\Im}_{\mathcal{R}/\mathcal{A}} & = & \underbrace{O + \mathcal{A}} & & & \\ \underbrace{\Im}_{\mathcal{R}/\mathcal{A}} & = & \underbrace{O + \mathcal{A}} & & & \\ \underbrace{\Im}_{\mathcal{R}/\mathcal{A}} & = & \underbrace{O + \mathcal{A}} & & & \\ \underbrace{O + \mathcal{A}} & & \\ \underbrace{O + \mathcal{A} & & \\ \underbrace{O + \mathcal{A}} & & \\ \underbrace{O + \mathcal{A}} & & \\ \underbrace{O + \mathcal{A} & & \\ \underbrace{O + \mathcal{A}} & & \\ \underbrace{O + \mathcal{A} & & \\ \underbrace{O + \mathcal{A}} & & \\ \underbrace{O + \mathcal{A} & & \\ \\ \underbrace{O + \mathcal{A} & & \\ \underbrace{$$