Lecture 16: Basics on Ring Thury
s, Definitions
Def A ring R is a mu-empty set, together with Leo operations: $t, \cdot: R \times R \longrightarrow R \quad$ (addilim \& multiflicatim) and $\overline{\omega_{0}}$ distinct elements $0,1 \in R$ satisfying:
(1) $(R, t, 0)$ is an abelian group $(0=n e n t$ al element)
(2) $(R, \cdot 1)$ is a multiplicative monoid with identity element 1 (closed under ©, but reed not have inverses ir all elements in R)
(3) Multiplication is distributive ore addition:

$$
\left\{\begin{array}{l}
a \cdot(b+c)=a \cdot b+a \cdot c \\
(b+c) \cdot a=b \cdot a+c \cdot a \quad \forall a, b, c \text { in } R
\end{array}\right.
$$

Notation: $R^{x}:=\{x \in R$ such that x has a multifficature inverse, ie $x y=y x=1$ hes a sold $\}$
II
$U(R)=$ group of units of R (with multiplication)
Obs: If multificatise inverses exist, they are unique, so we crete x^{-1} fo the inverse of $x \in U(R)$.
Obs: 0 is never invertible $(0 \cdot x=0 \neq 1)$ ms $U(R) \subset R \backslash\{0\}$.
Obs: $0 \cdot x=0$ foal $x \in R \quad((0+1) \cdot x=0 \cdot x+1 \cdot x=0 \cdot x+x=x$ $\forall x)$
Example: $\mathbb{Z}, Q, \mathbb{R}, \mathbb{C}, \mathbb{Z} / n \mathbb{Z}$

- Direct Product: If R_{1}, R_{2} are Two rings, then

$$
R_{1} \times R_{2}=\left\{(x, y) \quad: x \in R_{1}, y \in R_{2}\right\}
$$

becomes a ring with conpmenturise addition a multiplication.
More examples (1) $M_{n \times n}(R)=n \times n$ matrices $\operatorname{ser} R\left(\begin{array}{c}\text { neal }+\& \text { matrices } \\ \text { M }\end{array}\right.$
(2) Polynmial Rings oren R
gisten R ring x vaiable, $R[x]=\left\{\sum_{j=0}^{N} a_{j} x^{j} \quad a_{j} \in R N \geqslant 0\right\}$ is a ring:

- Additim : cmprentwixe (depree-by-dequee)

$$
\sum_{j=0}^{N} a_{j} x^{j}+\sum_{k=0}^{M} b_{k} x^{k}=\sum_{j=0}^{m a k i}\left(a_{j}+b_{j}\right) x^{j}
$$

when $a_{j}=0$ for $N<j \leqslant \max (N, M)$.

$$
b_{j}=0 \quad M<j \leqslant
$$

\qquad

- Multiplicatim : $\left(\sum_{j=0}^{M} a_{j} x^{j}\right)\left(\sum_{k=0}^{N} b_{k} x^{k}\right)=\sum_{l=0}^{M+N} \sum_{i+j=l}\left(a_{i} b_{l-i}\right) x^{l}$ with the understanding that $a_{i}=0 \quad \forall i>M \& b_{k}=0 \quad \forall k>N$ (this nule is impsed by distributire property \& definitim of t)
Inducterely

$$
\begin{aligned}
& R_{\left[x_{1}, \ldots, x_{n}\right]}=\underbrace{R_{\left[x_{1}, \ldots, x_{n-1}\right]}\left[x_{n}\right]}_{\text {cefficient ring }} \\
& \left\{\sum_{\substack{\alpha \in \mathbb{N}_{0}^{n} \\
\text { fimile }}} a_{\alpha} \underline{x}^{\alpha}\right\} \quad \begin{array}{c}
\underline{x}^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}} \\
\text { digue }\left(x^{\alpha}\right)=|\alpha|=\alpha_{1}+\cdots+\alpha_{n} .
\end{array}
\end{aligned}
$$

\$2. Some imprtant types of rings:
Let R be a ring.
Def : (1) R is said to be commutatiex if $a b=b a \quad \forall a, b \in R$.
(2) R is said to be a divisin ring (r skew-field) if $\left.R^{*}=R \cdot 30\right\}$
(3) R is a pield if it is a commutatire, disision ring.
(4) R is an intepral domaien if R is commutatire \& $\forall a, b: a b=0 \Rightarrow a=0$ or $b=0$.
[In gueral, if for $a \in R\{0\}$ there is $b \neq 0$ in R with $a b=0$, we say a is a zuro diviser. Inteqpal dumain $=$ comountatire + .

Example: $\mathbb{Z} / n \mathbb{Z}$ is a commutative ring.

- If n is not a prime number, say $n=n, n_{2}$, the residue classes of $n_{1} \& n_{2}$ in $\mathbb{Z} / n \mathbb{Z}$ are zero divisors.
- If n is prime, then $\mathbb{Z} / n \mathbb{Z}$ is a field

$$
\cdot(\mathbb{Z} / n \mathbb{Z})^{x}=\{\bar{m}: \operatorname{gcd}(m, n)=1\}
$$

Why? Euclidean Algseitlum gives $a m+b x=1$ for some a, b in \mathbb{Z}, so $\bar{a} \bar{m}=1$. Coseusely if $a_{m} \equiv 1 \bmod n$, we have $n \mid a_{m-1}$ so $a m-1=n k$ fo some $k \in \mathbb{Z} \leadsto a m+n(-k)=1$ $\& \quad g c d(m, n)=1 \quad(d|m, d| n \Rightarrow d|a m+n|-k)=1$ so $d= \pm 1$.)
§3. Subrings \& Ideals
Fix R a ring.
Def: A subring R^{\prime} of R is a subset $R^{\prime} \subset R$ containing 081 that is closed under addition, additive insesses \& multiplication ie:

$$
\text { If } a, b \in R \prime \text { then } a+b, a-b, a b \in R^{\prime}
$$

So R^{\prime} is a ring with inherited (ring) structure.
Of: Let $a \subset R$ be a subpoup of the abelion poop $(R, t, 0)$.
We say a is
(1) allft ideal of R if $\forall r \in R, a \in a, \quad r \cdot a \in a$
(2) aright ideal of R \qquad
(3) an ideal of R if it is both a left e a right ideal.

Example : (1) AU subgroups of $(\mathbb{Z} / n \mathbb{Z}, t, 0)$ are ideals.
(2) $F_{\Omega} R_{[x]}=\left\{\sum_{i=1}^{n} f_{i} g_{i} \quad f_{i} \in R[x]\right\}=\left\langle g_{1}, \ldots, g_{n}^{416}\right\rangle^{44}$ is a left ideal of $R[x]$ (generated by g_{1}, \ldots, g_{n}).
(3) $a=$ Upper Triangular 2×2 matrices $/ \mathbb{C}=\left\{\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right] \quad a, b, d \in \mathbb{C}\right\}$

- a is not a left ideal

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
\in \mathbb{Q} & 2
\end{array}\right) \notin a
$$

- d is wot a right ideal.

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right) \notin a
\end{aligned}
$$

Lemma If $\left\{a_{j \xi_{j \in J}}\right.$ is a ret of ideals of a ring R, then so is $\bigcap_{j \in J} a_{j}$ (Similar results hold for left re right ideals)
If/ Enough to check it's a soup, closedunder left/right multiplication by clements of R.

S3 quotient Rings
Let R be a ring \& $a \subset R$ be an ideal. We consider the set R / a (vieurd as a quotient of poops) with inherited sip stmective We endow this set with a multiplication:

$$
(a+\alpha)(b+\alpha)=a b+\alpha
$$

Obs: This is well-defined:

$$
\begin{aligned}
& \text { If } a+\alpha=a^{\prime}+\alpha \text {, making }\left(a^{\prime}-a\right) \in \alpha \text {, so } a^{\prime}=a+\infty^{\epsilon d} \\
& b+a=b^{\prime}+a, \quad\left(b^{\prime}-b\right) \in a \text { so } b^{\prime}=b+y \in a
\end{aligned}
$$

So $a^{\prime} b^{\prime}-a b \in \mathbb{C}$, maxing $a^{\prime} b^{\prime}+a=a b+\alpha$, as wt wanted.

If: R / a with +8 . as defined above is a ring, called the quotient ring (r residue ring) of R modulo d.

- $0_{R / a}=0+a$
-1r/a $=1+a$

Distributive Laws are valid because they effect these in R

