WWW

(2) Every abelian group is a module over Z

$$\begin{pmatrix} n \cdot m = \underbrace{m + \cdots + m}_{n \text{ terrison}} & fn n \ge 0 & \times & n \cdot m = (-n) (-m) \end{pmatrix} \qquad fn n \ge 0.$$
(3) $\forall n \ge 1 : M = \mathbb{R}^{n}$ (surp $N = \mathbb{R}^{n}$) is a left f resp. right) module
 $\exists n \in \mathbb{R}^{n}$ ($u = p \in \mathbb{R}^{n}$) is a left f resp. right) module
 $\exists n \in \mathbb{R}^{n}$ ($u = p \in \mathbb{R}^{n}$) is a left f resp. right) module
 $\exists n \in \mathbb{R}^{n}$ ($u = p \in \mathbb{R}^{n}$), then finite-dimensional restricts spaces over \mathbb{R} are
 $g \ge H$ summer plaisms of modules:
Left \mathbb{R} -modules:
Left $H_{1} = H_{2}$ be two left \mathbb{R} -modules. An \mathbb{R} -linear map (releft
 \mathbb{R} -module homomorphism) is a homomorphism of abelian proups
 $f: M_{1} \longrightarrow M_{2}$ such that $F(r \cdot m_{1}) = r f(m_{1}) \quad \forall r \in \mathbb{R}, m_{1} \in \mathbb{M}_{1}$
Write $f \in Hom_{\mathbb{R}}(H_{1}, H_{2}) = set$ of all \mathbb{R} -linear maps $H_{1} \longrightarrow H_{2}$.
 $\frac{Os}{r} : Hom_{\mathbb{R}}(M_{1}, H_{2})$ has a structure of an abelian gp
 $f, g \in Hom_{\mathbb{R}}(M_{1}, H_{2})$, then $F + g \in Hom_{\mathbb{R}}(H_{1}, H_{2})$
 $na (F + g) (m_{1}) = f(m_{1}) + g(m_{1}) = g(m_{1}) + f(m_{1}) = :(g + F)(m_{1})$
. If \mathbb{R} is commutative, $Hom_{\mathbb{R}}(H_{1}, H_{2})$ is an \mathbb{R} -module.

$$H_1 \longrightarrow H_2$$
 $H_1 \longrightarrow H_2$ First IsoThm: $F: H_1 \longrightarrow H_2$ R linear $H_1/ker f \longrightarrow Im f$ R linear $H_1/ker f \longrightarrow Im f$ F is an R-linear iso

$$\frac{\sqrt{3}}{\sqrt{3}} \frac{1}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt$$

$$\frac{\widehat{E} \times n \operatorname{dive}}{[H \cup 6]} \quad \begin{array}{c} \operatorname{fineralize} \quad \text{to} \quad \langle \Pi_{i} \subset \rightarrow \Pi_{j \in \mathbb{T}} \quad \text{that is} \\ \end{array} \\ \begin{array}{c} (\Pi_{i \in \mathbb{T}} \\ (I) \\$$

L18 (L)