Lecture 18: Basics on Modules
§1. Modules: Definitions \& examples
In what follows, we set $R=$ an arbitrary ring

$$
A=a \text { commutative ring }
$$

Def: Left and right modules ser R

- A left (resp right) morlule M (resp. N) see R is an abilion group M (resp. N) together with a bilinear map

$$
R \times M \xrightarrow{\circ} \text { (usp } N \times R \xrightarrow{\bullet} \text {) }
$$

such that $1 \cdot m=m$ (resp

$$
n \cdot 1=n
$$

) $\forall a, k \in R$

$$
(a \cdot b)-m=a \cdot(b \cdot m)
$$

$$
n(a \cdot b)=(n \cdot a) \cdot b \quad \begin{aligned}
& m \in M \\
& n \in N
\end{aligned}
$$

Bilinear mans limes m each comprenent:

$$
\begin{aligned}
& (a+b, m) \longmapsto(a+b) \cdot m=(a \cdot m)+(b \cdot m) \\
& \left(a, m+m^{\prime}\right) \longmapsto a \cdot\left(m+m^{\prime}\right)=a \cdot m+a \cdot m^{\prime} .
\end{aligned}
$$

NTh: $(-a) \cdot m=-(a \cdot m)=a \cdot(-m)$ fro bilinearity

$$
o_{R} \cdot m=o_{M} \text { fr all } m \in M \text {. }
$$

Remark: A mare economical way of defining left / right modules sur R would be to have an abclian group $M($ usp. $N)$ and a ring hon

$$
\left\{\begin{array}{l}
\lambda(1)=i d_{\mu} \\
\lambda(r+s)=\lambda(r)+\lambda(s) \\
\lambda(r s)=\lambda(r) \circ \lambda(s)
\end{array}\right.
$$

same as R as an abilion op

$$
a . b \text { in } R^{09}=b a \text { in } R
$$

where

$$
\begin{aligned}
\lambda(r): M & \longrightarrow M \\
m & \longmapsto r \cdot m
\end{aligned}
$$

(nap

$$
\left.\begin{array}{rl}
\rho(\lambda): N & \longrightarrow N \\
n \longmapsto n \cdot r
\end{array}\right)
$$

Dhs: When the ring is commutates, left = right, so we singly ese the term nodule.

Examples: (1) $a \subset R$ left ideal is a left module / R right \qquad right \qquad
(2) Erely abclian group is a murdule soen \mathbb{Z}
(3) $\forall n \geqslant 1: M=R^{n}\left(\operatorname{map} N=R^{n}\right)$ is a left t resp. right) module
(4) R a field $(Q, \mathbb{R}, \mathbb{C}, \ldots)$, then finite-dimensinal rects spaces oxer R aie
§2. Homomifhisms of morlules: lift R-nowdules.

Let M_{1} \& M_{2} be two left R-modules. An R-linear map (relft R-modele homomirphiton) is a homomieftison of abdian poups
$f: M_{1} \longrightarrow M_{2}$ such that $f\left(r \cdot m_{1}\right)=r f\left(m_{1}\right) \quad \forall r \in R, m_{1} \in M_{1}$
Write $f \in \operatorname{Hom}_{R}\left(M_{1}, \Pi_{2}\right)=$ set of all R-linear maps $M_{1} \rightarrow M_{2}$.
Obs: $H_{o_{2}}\left(M_{1}, M_{2}\right)$ has a simecture of an abelian op $f, g \in H_{m_{R}}\left(M_{1}, M_{2}\right)$, then $f+g \in \operatorname{Hom}_{R}\left(M_{1}, M_{2}\right)$

$$
\text { ina }(f+g)_{\left(m_{1}\right)}=f_{\left(m_{1}\right)}+g\left(m_{1}\right) \bar{\eta}_{\pi, a l} f\left(m_{1}\right)+f_{\left(m_{1}\right)}=:(g+f)_{\left(m_{1}\right)}
$$

If R is commutative, $H_{m_{R}}\left(\Pi_{1}, \Pi_{2}\right)$ is $\prod_{\text {in }}$ ab R-module.

- We have the uscual notions of sub modules, submidules penerated by ats, quotient unclules, kernets \& images. In particulas, we hase the 3 is murfthism Thans (HW6)

Finst $I_{s o}$ Thm: $F: M_{1} \longrightarrow M_{2} m$
 R limar

M1/keif $\xrightarrow[\vec{f}]{\underline{n}} \operatorname{Imf}$

- \bar{f} is an R-limar iss
\$3. Dict Sum of modules:
Def Let I be a set and $\left(M_{i}\right)_{i \in I}$ a set of (left) R-modules.

$$
\bigoplus_{i \in I} M_{i}=\left\{\left(x_{i}\right)_{i \in I:} \quad \begin{array}{l}
x_{i} \in M_{i} \forall_{i} \\
\\
\left.x_{i}=0 \text { fr all but finitely many } i \in I\right\}
\end{array}\right.
$$

is again a (left) R-module, with componenturise operations:

$$
\left\{\begin{aligned}
\left(x_{i}\right)_{i \in I}+\left(y_{i}\right)_{i \in I} & =\left(x_{i}+y_{i}\right)_{i \in I} \\
r \cdot\left(x_{i}\right)_{i \in I} & =\left(r x_{i}\right)_{i \in I}
\end{aligned}\right.
$$

Universal Property:
Given a left R-module N and $\left\{f_{i} \in H_{R}\left(M_{i}, N\right)\right\}_{i \in I}$, there exists a unique R-lemur map
$f: \bigoplus_{i \in I} M_{i} \longrightarrow N$
$\left(x_{i}\right)_{i \in I} \longmapsto \sum_{i \in I} f\left(x_{i}\right)$ (finite sem by definition of $\oplus_{i \in I} M_{i}$)

Special case: M a left R-module, $M_{1}, M_{2} \subset M$ submodules
Prop: $M \leftarrow \sim M_{1} \oplus M_{2}$ if \& may if $. M_{1}+M_{2}=M$

$$
\left.M_{1} \cap M_{2}=30\right\}
$$

Bod: As $M_{1} \longrightarrow M$ are R-lerear, we get by the uniressal

$$
M_{2} \longrightarrow M
$$

property $M_{1} \oplus M_{2} \xrightarrow{G} M$

$$
\left(m_{1}, m_{2}\right) \longmapsto m_{1}+m_{2}
$$

- Image of $f=$ submodule of M geucrated by $M_{1} \& M_{2}$
- Kernel of $f=\left\{(x,-x): x \in M_{1} \cap M_{2}\right\}$

Thus, h is an is amorphism of $\left.M=M_{1}+M_{2} \& M_{1} \cap M_{2}=30\right\}$.
$\frac{\text { Exercise: generalize to }}{(H W 6)}\left\{M_{i} \longrightarrow M\right\}_{i \in I}$ that is:
$\underset{i \in I}{\oplus} M_{i} \longrightarrow M$ is an isomorphism of
(1) $M=\sum_{i \in I} M_{i} \quad$ (submodule generated by $\left\{M_{i}\right\}_{i \in I}$)
(2) $M_{i} \cap \sum_{\substack{j \in I \\ j \neq i}} M_{j}=0 \quad \forall i \in I$
84. Direct Product:

Again, if I is a set and $\left\{M_{i}\right\}_{i \in I}$ is a collection of left R-modules, the direct product $\prod_{i \in I} M_{i}$ is defined as $\prod_{i \in I} M_{i}=\left\{\left(x_{i}\right)_{i \in I}\right.$ where $\left.x_{i} \in M_{i} \forall i\right\}$ $i \in I$
(Note: No finiteness condition!)
Remark: Fr I finite $\bigoplus_{i \in \Gamma} M_{i} \xrightarrow{\sim} \prod_{i \in I} M_{i}$ as eft R-modules. Fr general I, they are different.

Universal Property_: Given a left R-module N and R-limen maps $g_{i}: N \longrightarrow M_{i}$, there exists a unique $\operatorname{map}^{N} \xrightarrow{g} \prod_{i \in I} M_{i} \quad f_{(n)}=\left(f_{i(n)}\right)_{i \in I}$ wt allowed for \oplus if i $\in \mathbb{I}(I)=\infty$
Furthermore $\pi_{j}: \prod_{i \in I} M_{i} \longrightarrow \Pi_{j}$ is the projection to the $j^{\text {th }}$ term, we have

\$5. Short exact sequences:
If: If M_{1}, M_{2}, M_{3} are three left R-modules, and $M_{1} \xrightarrow{f} M_{2} \xrightarrow{S} M_{3}$ an R-linear maps, we say this reference is exact $\left(\right.$ at M_{2}) if Image of $f=$ kernel of g
242: $0 \longrightarrow M_{1} \xrightarrow{f} M_{2} \xrightarrow{\rho} M_{3} \longrightarrow 0$ s.e.s mas .f infective, g seryectiers

$$
\text { - } \operatorname{Im}(f)=\operatorname{Ker}(g)
$$

Def 3: A short exact sequence $0 \rightarrow M_{1} \xrightarrow{r} \Pi_{2} \xrightarrow{g} \Pi_{3} \rightarrow 0$ is Trial if we have an R-fenian isomerphison

$$
\begin{aligned}
& M_{1} \oplus M_{3} \xrightarrow{\eta} M_{2} \text { st : } \\
& 0 \longrightarrow M_{1} \xrightarrow{h} M_{2} \xrightarrow{q} M_{3} \longrightarrow 0 \\
& 0 \longrightarrow M_{1} c i=M_{1} \oplus M_{3} \xrightarrow{\pi_{2}} M_{3} \longrightarrow 0
\end{aligned}
$$

Peopositim: A short exact sequence $0 \longrightarrow M_{1} \xrightarrow{r} M_{2} \xrightarrow{g} \Pi_{3} \rightarrow 0$ is trinal if and only if it splits, that is, if $\exists R$-linear map $s: M_{3} \longrightarrow M_{2}$ st gos $=$ id $_{M_{3}}$ (an R-lima section) Proof: (\Leftrightarrow) Take $j: M_{3} \longrightarrow M_{1} \oplus M_{3}$ as the usual inclusion and define s: $M_{3} \longrightarrow M_{2}$ as $\eta \circ j$.

$$
\begin{aligned}
\left(\Leftrightarrow \eta_{:} M_{1} \oplus M_{3}\right. & \longrightarrow M_{2} \quad \text { is } R \text {-limen } \\
(x, y) & \longmapsto f_{(x)}+s(y)
\end{aligned}
$$

and it makes the diagram commute
Exercise: Verify that η is am is orphism.

