Lecture 19: Chinese Remainder The, prime and maximal ideals
51. Ideals in a commutates ring:

Fix a commutates ring $R . I \subset R$ is an ididel if it is a subgroup of $(R,+0)$ \& $R I R \subset I$
$a, b \in f(R)$ (ideals $\forall R$)

$$
\Rightarrow\left\{\begin{array}{l}
a+b=(a+b: a \in a, b \in b) \in \mathcal{G}(R) \\
\left.a \cdot b=\left\{\sum_{i=1}^{N} a_{i} b_{i} \quad a_{i} \in \dot{x}, b_{i} \in b, N \in \mathbb{Z} \geqslant 1\right)\right\} \in \mathcal{I}(R)
\end{array}\right.
$$

The arithmetic of natural numbers has its analogue in the set of ideals of R.
Divisibility \longleftrightarrow Indusion $($ for $\mathbb{Z}: n / m \Leftrightarrow(m) \leq(n))$
Greatest ammundivis $\leftrightarrows \leftrightarrow$ Sum $\quad((n)+(m)=(\operatorname{gcd}(n, m)))$
Least common multiple \leftrightarrow Intersection $((n) \cap(m)=(\operatorname{lcm}(n, m)))$
Multiplication \longleftrightarrow Product $\quad((n) \cdot(m)=(n m))$
With this dictismaly in mind,
Def: We say two ideals $a, b \subset R$ are copreime if $x+b=R$.

- Similarly, we wite $r_{1} \equiv r_{2}($ and $x)$ if $r_{1}-r_{2} \in \pi$, that is

$$
\pi: R \rightarrow R / x \text { sines } \pi\left(r_{1}\right)=\pi\left(r_{2}\right)
$$

Chinese Remainder Thooun (Sun $T_{z e}$)
Let x_{1}, \ldots, x_{n} be ideals of R, paimise opfrime $\left(x_{i}+x_{j}=R\right)$
Then, for any $x_{1}, \ldots, x_{n} \in R, \exists x \in R$ such that $x \equiv x_{i} \quad\left(\bmod x_{i}\right)$ fr $1 \leq i \leq n$

Proof: Ix le will need the following fact (easy to reify):
Claim 1: $f_{1}, \ldots, b_{r} \subset R$ ideals $\Rightarrow \prod_{i=1}^{c} b_{i} \subset \bigcap_{i=1}^{n} b_{i}$.
Next, we sketch the prod of CRT:
Main idea: Find $y_{1}, \ldots, y_{n} \in R$ such that fr all $i=1, \ldots, n$ $y_{i} \equiv 1$ mod x_{i} \& $y_{i} \equiv 0$ and $r_{j} \forall j \neq i$
If we succeed, we et $x=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} \&$ conclude $x \equiv x_{i}$ mod x_{i} fo each i. (arithmetic in R / a_{i})
Case $n=2: R=x_{1}+x_{2} \Rightarrow 1=a_{1}+a_{2}$ fr sine $a_{i} \in x_{i}$
Tale $y_{1}=a_{2} \& \quad y_{2}=a_{1}$.
[Check $y_{1}=a_{2} \in x_{2} \Rightarrow y_{1} \equiv 0$ nd x_{2}

$$
\left.y_{1}=1-a_{1} \Rightarrow 1-y_{1} \in x_{1} \text {, ie } y_{1} \equiv 1 \bmod x_{1} x\right]
$$

Geneal case: Since $R=a_{1}+r_{j} \quad 2 \leqslant j \leqslant n$, then

$$
\begin{aligned}
& 1=a_{1}^{(j)}+a_{j} \text { for } a_{1}^{(j)} \in x_{1} \text { \& } a_{j} \in x_{j} \\
& \Rightarrow 1=\prod_{j=2}^{n} 1=\prod_{j=2}^{n}\left(a_{1}^{(j)}+a_{j}\right)=\underbrace{\prod_{j=2}^{n} a_{j}}+\underbrace{\underbrace{}_{\in R}}_{\substack{\left.n \\
\prod_{j=2}^{n} a_{j} \\
\prod_{1} \\
a_{1}\right) \\
a_{1} \prod_{k \neq j}\left(a_{i}+a_{k}\right)} \in R}
\end{aligned}
$$

So $x_{1} \& \quad b=\prod_{j=2}^{n} x_{j}$ are coprime ideals.
By the $n=2$ case, we can find $y, \in R$ st.

$$
y_{1} \equiv 1 \text { mad } x_{1} \& y_{1} \in \prod_{j=2}^{n} x_{j} \subset \bigcap_{j=2}^{n} x_{j}
$$

That is $y_{1} \equiv 1$ mad $x_{1} \& y_{1} \equiv 0 \quad \operatorname{mard} x_{j} \quad \forall j=2, \ldots n$. Repeating this argument ir each \dot{x}_{i}, we set $y_{i}=\left\{\begin{array}{l}1 \text { mol } x_{i} \\ 0 \text { mud } x_{j} . \ln j \neq i\end{array}\right.$

Corollary 1:

$$
\frac{R}{\bigcap_{i=1}^{n} x_{i}} \xrightarrow{\sim} \prod_{i=1}^{n} B / a_{i}
$$

PF/Let $R \xrightarrow{F} R / x_{1} \times \ldots \times R / x_{n}$
if x_{n}, \ldots, x_{n} ar painuix wing ideds of R ((mminutatione)

$$
\text { pr } \pi_{i}: R \rightarrow R / a_{i}
$$

$$
x \longmapsto\left(\pi_{1}(x), \ldots, \pi_{n}(x)\right)
$$

-f is a ring homomorphism.

- f is suyectix by CRT $\left(x_{1}, \ldots, x_{n}\right.$ with given

$$
\left.\pi_{1}\left(x_{1}\right), \ldots, \pi_{n}\left(x_{n}\right)\right)
$$

- $\operatorname{Kec} f=\bigcap_{i=1}^{n} \mathscr{x}_{i}$

So by the $1^{\text {st }}$ Iso T harem, we are dove.
st Prime and Maximal ideals:
Assume R is a commutative ring.
Def: A proper ideal $8 \subset R$ is a prime ideal if $1 r$ ester a, b in R, we hare:

$$
a b \in 8 \Rightarrow a \in P \quad r \quad b \in P
$$

Def: A proper ideal $m \subsetneq R$ is a maximal ideal if $m \nsubseteq x \subseteq R, x$ ideal $\Rightarrow x=R$.
Proposition 1: Maximal ideals exist.
Proof: Write $I=$ st of all proper ideal of R.

- $\mathcal{f} \neq \varnothing$ since $(0) \in \mathcal{f}$.
- I is partially ordered by inclusion

Consider a chain (= a Totally roared subset of of) $\left(a_{i}\right)_{i \in I}$ when e $a_{i} \subseteq a_{j}$ if $i \leqslant j$.
Define $x=\bigcup_{i \in I} x_{i}=\sup _{i \in I}\left(a_{i}\right)$
Claim: $x \in \mathcal{I}$.
PF/. $a, b \in x$, then $\exists l$ st $a, b \in x_{l}\left(\begin{array}{c}a \in x_{i} c a_{l} \\ b \in x_{j} ; x_{l}\end{array}\right.$

$$
\begin{aligned}
& \Rightarrow a \pm b \in x_{l} \subset a \\
& .0 \in \pi \\
& -a \in \pi, r \in R \Rightarrow \exists l \text { st } a \in \mathscr{X}_{l} \Rightarrow r a \in \mathscr{X}_{l}
\end{aligned}
$$

So x is an ideal

- $X_{\text {is }}$ poster since $1 \notin r_{i} \forall i$ so $1 \notin \bigcup_{i \in \Gamma} \pi_{i}$.

In condusin: esery chain in f has a supremeien in f. By Zen's Lemma, there are maximal clements in of
Grollary z: Let $x \subset R$ be proper ideal. Then, there exists a maximal ideal m of R containing α.
Proof Use the Proposition for $R^{\prime}=R / a$ a check that maximal idiot of R^{\prime} correspond to maximal ideas of containing or. This is tire by the $2^{\text {nd }}$ Ismirphison Theorem.

