Lecture 20. Prime ideals, prime avoidance, bral rings 100 Last Time : CRT & existence of nearined ideals ma commutative ring R Crollary: Let X & R be a profer ideal. Then, there exists a maximal ideal M of Z untaining Q. <u>Scoof</u>: Maximal ideals in R'= R/2 and maximal ideals M of R containing S. <u>\$1 Prime ideals</u>: R = annutative ring If BCR ideal is prime if abed => aed or bed. Obs: We still don't know we have prime ideals! . An equivalent characterization is: Proporition: 8 5 R ideal is prime (R/8 is an integral dimain Swol: 8 is prime (=) ab E8 implies a E8 or LE8. $(\implies \overline{\mathbb{L}}_{(q)} = 0 \text{ in } \overline{\mathbb{L}}_{(q)} = 0 \text{ in } \overline{\mathbb{L}}_{(q)} = 0 \text{ or } \overline{\mathbb{L}}_{(q)} = 0$ (here T: R - R/p). (No revo-divisors) [] Lemma: A commutative ring R is a field it suby if (0) & R are the only ideals in R 3f/=) Fix $I\neq(0)$ en ideal of R. If $x \in I \setminus 30$? then $\exists y$ st $xy \equiv 1$ so π is a unit and $1 \in I$, i.e. I = R. (=) Pick x ∈ R-307 & consider I=(x) ideal. Then I=R >1, maning ZyER with 1= yx=xy so xER. 0 Proposition 2: M q R ideal is maximal (=> P/m is a field 3F/ R/m is a field (0) & R/m are the may ideals in R/m

Since z ideals in R/or 4 ----- z ideals in R containing az We conclude : R/m is a field (=> the may ideals of R containing M an M and R (=> M & R is a maximal ideal. D Corollary 2. Every maximal ideal is prime. 34/ Fields are integral domains. Examples: R=Z L(O), (P) : PEZz prime & an all the prime ideals. . (0) is prime but not maximal : (p) is maximal 17 every 122 prime. Propritin 3: Let F: A -B be a ring hommorphism, where A, B au commutative rings. Let 97B be a prime ideal. Then $\mathcal{B} = f^{-1}(q) \subseteq A$ is a prime ideal. A The statement fails for maximal ideals! Ex: Z ~ Q q=(0) is the aly maximal ideal but f'(o) = (o) is not maximal in \mathbb{Z} . 'Snoof: We know that F'(q) is an ideal of A (Lecture 17) given 9,5cA with 9,5 EB, we want to show are Bor 5EB. But $f(ab) = f(a)f(b) \in \mathcal{Q} \implies f(a) \in \mathcal{Q}$ is $f(b) \in \mathcal{Q}$. Hina, ac 8 7 508.

<u>§ 2. Prime avoidance</u>:

Fix R commutative ring Thorem: Fix 81,..., 8n prime ideals of Ralet & CR be an ideal with OCC UP; Then, there exists some j=1,..., with or c Bj. 'Swood We will prose the contrapositive : æ¢Ø; ¥j=1,-,n ⇒ æ¢ÜØ;. (prine meby induction n n We argue by induction on n . The assertion is true for n=1. . Assume n>1 a that the assertion has been recified for n=1. Thus for i E i, ..., n' we have: $\mathcal{X} \neq \mathcal{B}_j$ for $j \in \{1, \dots, n\}$, $i \in \mathcal{X} \neq \bigcup \mathcal{B}_j$. That is, we can find a: $\in \mathcal{X}$ with $a: \notin \mathcal{B}_j$ $\neq j \neq i$. We analyze z cases: We analyze 2 cases : (1) Now, if a $\notin \mathcal{B}_i$ for some i, we are done vince $a_i \notin \bigcup_{j=1}^{i} \mathcal{B}_j$. 12) On the contrary, if ai E &i Vi=1,..., we consider the element $\alpha = \sum_{l=1}^{\infty} \alpha_1 \cdots \alpha_{l-1} \alpha_{l+1} \cdots \alpha_n \in \mathcal{X}$ For each i=1,..., nevery summand of & , except a, ...a. a. ...an

lies in \mathcal{B}_i (as $q_i \in \mathcal{B}_i$) Since $a_1 \cdots a_{i-1} q_{i+1} \cdots q_n \notin \mathcal{B}_i$ as none of its factors are in \mathcal{B}_i then we conclude $a \notin \mathcal{B}_i$ $\forall i=1, \dots, n$, so $\mathcal{E} \notin \bigcup_{i=1}^n \mathcal{B}_i$.

Thurm 2: Let
$$\mathcal{A}_{1},...,\mathcal{A}_{n}$$
 be ideals of \mathbb{R} (commutative)¹⁰⁰
and $\mathcal{B} \subseteq \mathbb{R}$ be a prime ideal.
If $\bigcap_{j=1}^{n} \mathcal{A}_{j} \subseteq \mathcal{B}$, then there exists $l = 1, ..., n$ with $\mathcal{A}_{\underline{n}} \subseteq \mathcal{B}$.
Proof: We will show: $\mathcal{A}_{\underline{n}} \not\subseteq \mathcal{B}$ $\mathcal{H}_{\underline{n}} \Rightarrow \bigcap_{\underline{n}=1}^{n} \mathcal{A}_{\underline{n}} \not\in \mathcal{B}$
By hypothesis, we can hind $a_{\underline{n}} \in \mathcal{A}_{\underline{n}} \setminus \mathcal{B}$ $\mathcal{H}_{\underline{n}} \Rightarrow \bigcap_{\underline{n}=1}^{n} \mathcal{A}_{\underline{n}} \not\in \mathcal{B}$
Take $\underline{a} = a_{1} \cdots a_{\underline{n}}$.
 $a \in \mathcal{A}_{\underline{n}} \not\in \mathcal{H}$ (\mathcal{B} is prime) $\int_{\underline{n}} \Rightarrow \bigcap_{\underline{n}=1}^{n} \mathcal{A}_{\underline{n}} \not\in \mathcal{B}$.
To prove the statement for the equalities, we argue as follows
If $\bigcap_{\underline{n}=1}^{n} \mathcal{A}_{\underline{n}} = \mathcal{B}$, we know $\mathcal{A}_{\underline{n}} \subseteq \mathcal{B}$ for some \underline{l} .
Contractly, $\mathcal{B} = \bigcap_{\underline{j=1}}^{n} \mathcal{A}_{\underline{j}} \subseteq \mathcal{A}_{\underline{n}}$, so $\mathcal{B} = \mathcal{A}_{\underline{n}}$. \Box
 $\underline{s}_{\underline{n}}$ irreal rings: Fix \mathbb{R} to be a commutative ring
 $\mathfrak{A}_{\underline{j}}$: \mathbb{R} is a direal ring if it has ady we maximual ideal
Notation: (\mathbb{R}, M) where M is its unique maximal ideal.
Examples: \bigcirc Every field is a local ring $(M=(0))$
 $\textcircled{B} = \mathbb{R} \in \mathbb{K}[X]$ is the duals of $\mathbb{K}[X]$ entaining (X^{3}) ,
 \mathbb{B} . $\mathbb{K}[X]$ is $\mathbb{P}[h$ so any $\mathcal{M} \subset \mathbb{K}[X]$ maximual equals (\mathbb{F}) for some
 $\mathbb{F}\mathbb{K}[X]$ involucible
But $\mathbb{F}[X^{3}]$, so $(\mathbb{F}) = [X]$. This is maximual in $\mathbb{K}[X]!$

Tun exercise: This definition of • will not work for the abelian
sp
$$K[[x^-],x]] = \int \sum_{j=-\infty}^{\infty} a_j x^j : a_j \in K \quad \forall j \in \mathbb{F}$$

(Because if it did:+ $x^{-2} + x^{-1} + 1 + x + x^2 + \cdots = \frac{-x^{-1}}{1-x^{-1}} + \frac{1}{1-x} = 0$)
Compare coeff of x^{μ} to get $1 = 0$!