<u>Recall</u>: R commutative is a local ning if it has a unique maximal ideal <u>\$1 Moren bralnings</u>

- · Local rings can be characterized by their group of units.
- Proposition: R is local if enlyif the set of all non-units of R is an ideal of R.
 - 3F/(=>) set $I = R \cdot R^{\times}$. Assume R is local with unique maximal ideal M. Since $M \subseteq R$, we have $M \subseteq I$. (repeated if $x \in R \cdot R^{\times}$, then (\times) is a profer ideal & we can
 - find a malt ideal of R containing x. Since R is local, $X \in M$. Thus $R \cdot R^{\times} \subseteq M \subseteq R \cdot R^{\times}$ gives $M = R \cdot R^{\times}$, so $R \cdot R^{\times}$ is an ideal of M.
- (\Leftarrow) IF $M = R \cdot R^{\times}$ is an ideal, then M is maximal Any $x \notin M$ will be a unit so if $X \not\supseteq M$ is an ideal with $x \in O(\cdot M)$, we unclude O(=(1) = R).
- Now, if b is any projer ideal of R, then $b \in \mathbb{R} \setminus \mathbb{R}^{n}$, so $b \in \mathbb{M}$. Thus, \mathcal{M} is the unique maximal ideal of R. Example: $\mathbb{R} = \mathbb{K}[x]_{(x^{3})} = \int_{1}^{\infty} h_{(x)} = 9_{0} + 9_{1} \times 19_{2} \times 2^{2} = 9_{0}, 9_{1}, 9_{2} \in \mathbb{K}$ <u>Ulaim</u>: Fisq unit $\Longrightarrow q_{0} \in \mathbb{K} \setminus 30$

$$\frac{\Im}{\Im} \left(\begin{array}{ccc} a_{0} + a_{1} \,\overline{x} + a_{2} \,\overline{x}^{2} \end{array} \right) \left(\begin{array}{ccc} b_{0} + b_{1} \,\overline{x} + b_{2} \,\overline{x}^{2} \end{array} \right) = 1 \\ \left(\begin{array}{c} a_{0} b_{0} = 1 \\ a_{0} b_{0} = 1 \end{array} \right) \\ \left(\begin{array}{c} a_{0} b_{0} = 1 \\ a_{0} b_{1} + a_{1} b_{0} = 0 \end{array} \right) \\ \left(\begin{array}{c} a_{0} b_{1} + a_{1} b_{0} = 0 \end{array} \right) \\ \left(\begin{array}{c} a_{0} b_{1} + a_{1} b_{0} = 0 \end{array} \right) \\ \left(\begin{array}{c} a_{0} b_{1} + a_{1} b_{0} = 0 \end{array} \right) \\ \left(\begin{array}{c} a_{0} b_{1} + a_{1} b_{0} = 0 \end{array} \right) \\ \left(\begin{array}{c} a_{0} b_{1} + a_{1} b_{0} = 0 \end{array} \right) \\ \left(\begin{array}{c} a_{0} b_{1} + a_{1} b_{0} = 0 \end{array} \right) \\ \left(\begin{array}{c} a_{0} b_{2} + a_{1} b_{1} + a_{2} b_{0} = 0 \end{array} \right) \\ \left(\begin{array}{c} b_{2} - a_{0}^{-1} \left(-a_{0}^{-1} a_{2} + a_{0}^{-2} a_{1} \right) \end{array} \right) \\ \left(\begin{array}{c} a_{0} b_{2} + a_{0} b_{1} + a_{0} b_{0} = 0 \end{array} \right) \\ \left(\begin{array}{c} b_{1} - a_{0}^{-1} a_{2} + a_{0}^{-2} a_{1} \right) \\ \left(\begin{array}{c} a_{0} b_{1} + a_{1} b_{2} b_{0} = 0 \end{array} \right) \\ \left(\begin{array}{c} b_{1} - a_{0}^{-1} a_{2} + a_{0}^{-2} a_{1} \right) \\ \left(\begin{array}{c} a_{0} b_{2} - a_{0}^{-1} \left(-a_{0}^{-1} a_{2} + a_{0}^{-2} a_{1} \right) \end{array} \right) \\ \left(\begin{array}{c} a_{0} b_{2} - a_{0}^{-1} \left(-a_{0}^{-1} a_{2} + a_{0}^{-2} a_{1} \right) \end{array} \right) \\ \left(\begin{array}{c} a_{0} b_{2} - a_{0}^{-1} \left(-a_{0}^{-1} a_{2} + a_{0}^{-2} a_{1} \right) \\ \left(\begin{array}{c} a_{0} b_{2} - a_{0}^{-1} \left(-a_{0}^{-1} a_{2} + a_{0}^{-2} a_{1} \right) \end{array} \right) \\ \left(\begin{array}{c} a_{0} b_{2} - a_{0}^{-1} \left(-a_{0}^{-1} a_{2} + a_{0}^{-2} a_{1} \right) \\ \left(\begin{array}{c} a_{0} b_{2} - a_{0}^{-1} \left(-a_{0}^{-1} a_{2} + a_{0}^{-2} a_{1} \right) \\ \left(\begin{array}{c} a_{0} b_{2} - a_{0}^{-1} \left(-a_{0}^{-1} a_{2} + a_{0}^{-2} a_{1} \right) \end{array} \right) \\ \left(\begin{array}{c} a_{0} b_{2} - a_{0}^{-1} \left(-a_{0}^{-1} a_{2} + a_{0}^{-2} a_{1} \right) \\ \left(\begin{array}{c} a_{0} b_{2} - a_{0}^{-1} \left(-a_{0}^{-1} a_{2} + a_{0}^{-2} a_{1} \right) \\ \left(\begin{array}{c} a_{0} - a_{0}^{-1} a_{1} + a_{0}^{-2} a_{1} \end{array} \right) \\ \left(\begin{array}{c} a_{0} - a_{0}^{-1} a_{1} + a_{0}^{-2} a_{1} \end{array} \right) \\ \left(\begin{array}{c} a_{0} - a_{0}^{-1} a_{1} + a_{0}^{-2} a_{1} \end{array} \right) \\ \left(\begin{array}{c} a_{0} - a_{0}^{-1} a_{1} + a_{0}^{-2} a_{1} \end{array} \right) \\ \left(\begin{array}{c} a_{0} - a_{0}^{-1} a_{1} + a_{0}^{-2} a_{1} \end{array} \right) \\ \left(\begin{array}{c} a_{0} - a_{0}^{-1} a_{1} + a_{0}^{-2} a_{1} \end{array} \right) \\ \left(\begin{array}{c} a_{0} - a_{0}^{-1} a_{1} + a_{0}^{-2} a_{1} \end{array} \right) \\ \left(\begin{array}{c} a_{0} - a_{0}^{-1} a_{1} + a_{0}^{-2} a$$

Include: R ~ R × = (x), so it's an ideal Proposition => Rislocal

Example 2: Fix
$$p \in \mathbb{Z}_{22}$$
 prime and $la(p)$
 $R = \begin{cases} \frac{1}{b} \in \mathbb{Q} \mid PXb \in gcd(q,b)=1 \end{cases}$ lumul none $\mathbb{Z}_{(p)}$
(laim1: R is a Ring (subring of \mathbb{Q})
 $\cdot \frac{q}{1}, \frac{1}{4} \in \mathbb{R}$
 $\cdot \frac{a_1}{b_1} + \frac{a_2}{b_2} = \frac{q_1b_2 + a_2b_1}{b_1b_2}$ $pYb_1, 1Yb_2 \Rightarrow pYb_1b_2$
 $\Rightarrow \frac{a_1}{b_1} + \frac{a_3}{b_2} \in \mathbb{R}$
 $\cdot \frac{a_1}{b_1} + \frac{a_3}{b_2} \in \mathbb{R}$
 $\cdot \frac{a_1}{b_1} + \frac{a_3}{b_2} = \frac{q_1q_2}{b_1b_2}$ $pYb_1, 1Yb_2 \Rightarrow pYb_1b_2$
 $\Rightarrow \frac{a_1}{b_1} + \frac{a_3}{b_2} \in \mathbb{R}$
 $\cdot \frac{a_1}{b_1} + \frac{a_3}{b_2} \in \mathbb{R}$
 $\cdot \frac{a_1}{b_1} + \frac{a_3}{b_2} \in \mathbb{R}$
 $\cdot \frac{a_1}{b_1} + \frac{a_3}{b_2} = \frac{q_1q_2}{b_1b_2}$ pYb_1b_2 $c = a_1a_2$
 $\Rightarrow pY \frac{b_1b_2}{b_2} = c = a_1a_2$
 $\Rightarrow \frac{a_1}{b_1} + \frac{a_3}{b_2} \in \mathbb{R}$
However $\mathbb{R}^{\times} = \{ p \} = pR$ is an idual $\Rightarrow \mathbb{R}$ is local.
 $\frac{52 \operatorname{Ring}}{b_1} \frac{d_1 \operatorname{partime}}{b_2}$
 $\frac{8}{b_1} + \frac{6}{b_2} = c = a_1b_2 + a_2b_1$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1$
 $\frac{52 \operatorname{Ring}}{b_1} \frac{d_1 \operatorname{partime}}{b_2}$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1}$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1}$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1}$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1}$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1}$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1}$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1}$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1}$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1}$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1}$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1}$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1}$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1}$
 $\frac{1}{b_1} + \frac{1}{b_2} = c = a_1b_2 + a_2b_1}$

94 The minor of hactime of R relative to S, denoted by
S'R is the set RxS/ with
() Addition: (a,s) + (b,t) = (at+bs, st)
() Hultiplication: (a,s) - (b,t) = (ab, st)
() N initial elements:
$$0 = (0,1)$$
 & $1 = (1,1)$
(Think of (a,s) in R'S as a.)
Special cone: R is an integral domain (no quo divised)
Then S = Rright (s a multiplicatively closed ret.
Then S'R is a field called the field of fractimes
Sometimes denoted by Quot(R)
(a,s) $\neq (0,1)$ is invertible $\& (a,s)^{-1} = (s,a)$.
($\& a \neq 0$)
Ex: $OR = \mathbb{Z}$, Quot(R) = Q (a,b) \Longrightarrow a
(a,b) $\sim (c,d)$ (\Longrightarrow fseld is a dimain so ad-be = 0 (since s $\neq 0$)
 $II = gcd(a,b)$ then a $\frac{d}{n} = \frac{b}{m} c$ frees
 $n = gcd(a,b)$ then a $\frac{d}{n} = \frac{b}{m} c$ frees
In enclusion: a $= \frac{am}{b/m} = \frac{am}{b/m} = \frac{c}{am}$.
($\& R = \mathbb{Z}[x]$, Quot(R) = $Q(x) = \frac{1}{2} \frac{f(x)}{g(x)} = \frac{1}{2} \frac{f(x)}{g(x)}$
Austher Special example $\frac{f(x)}{f(x)} = \frac{1}{g(x)} \frac{f(x)}{g(x)} = \frac{1}{g(x)} \frac{f(x)}{g(x)} = \frac{1}{g(x)} \frac{f(x)}{g(x)} = \frac{1}{g(x)} \frac{f(x)}{g(x)} \frac$

$$\begin{array}{l} \underbrace{\exists \psi} : & S^{-1}R = total ring of fractions = Quot(R)^{(21)}\\ & \hline \text{True prlynniab to Lanut prlynniab:}\\ & S = 31, x^2 : i \ge 1 f \in K[x] is multiplicatively closed.\\ & Then: S^{-1} [K[x]] = [K[x, x^{-1}].\\ & (q,s) \sim (5,t) \implies x^n (at - bs) = 0 \qquad n \ge 0\\ & \text{Again, at } -bs = 0 \qquad , =, t \in S \quad \text{so } s = x^t, t = x^t\\ & \text{so } a = b x^{k-2} \in K[x] \quad if k \ge 1\\ & b = a x^{1-k} \in K[x] \qquad if k \ge 1\\ & b = a x^{1-k} \in K[x] \qquad if k \ge 1\\ & b = a x^{1-k} \in K[x] \qquad if k \ge 1\\ & b = a x^{1-k} \in K[x] \qquad if k \ge 1\\ & f = a x^{1-k} = a^{1-k} = a^{1-k} =$$

Fix R commutative ring $a S \subset R$ multiplicaturely closed <u>Proposition</u>: We have a natural ring hommorphism $j_S : R \longrightarrow S^{-1}R$ $j_S : R \longrightarrow S^{-1}R$ (= class of (9,1))

such that for every tes,
$$js(t)$$
 is invitible in $S^{-1}R^{12/6}$
(its inverse is $\frac{1}{t}$)
Proof. Definition of the ring structure in $S^{-1}R$ makes is a
ring homomorphism.
 $\cdot (\frac{t}{t})^{-1} = \frac{1}{t}$ because $(t,1) \cdot (1,t) = (t,t) = 1/2$
Lemma: $ker(j_{5}) = 3 = C \iff 3 \le 5$ with $sa = 0$ }
 $Ff \ j_{5}(a) = a = a \iff 3 \le 5$ st $s(a = 1 - 0 \cdot 1) = 0$, $2Sq = 0$
Next, we state the universal polytety satisfied by $S^{-1}R$.
Theorem: Fix B another commutative ring a left $F:R \longrightarrow B$
be a ring homomorphism such that $\forall t \in S: F(t) \in B$ is investible
Then, there exists a unique ring homomorphism $F:S^{-1}R \longrightarrow B$
making $Fo j_{5} = t$
 $Read$ Want to show $R \longrightarrow f$
 $S^{-1}R \longrightarrow J!F$
Set $F(\frac{a}{S}) := F(a) F(s)^{-1}$
 $\cdot \frac{bull - defined}{c} : \frac{a}{S} = \frac{b}{t} \iff 3 \le s' \le 5$ with $s'(at-bs) = 0$
 $B^{*} \longrightarrow F(a) F(t) = F(b) F(s)$
So $F(a) F(s)^{-1} = F(b) F(t)^{-1}$ in B

$$\frac{\operatorname{Ling}}{\operatorname{F}} \frac{\operatorname{Line}\operatorname{minist}}{\operatorname{Line}} :$$

$$\frac{\operatorname{F}\left(\frac{a}{s} + \frac{b}{t}\right) = \operatorname{F}\left(\frac{at+bs}{st}\right) = \operatorname{F}\left(at+bs\right) \operatorname{F}\left(st\right)^{-1}}{= \left(\operatorname{F}\left(a, \operatorname{F}\left(t\right) + \operatorname{F}\left(b\right) \operatorname{F}\left(s\right)\right) + \left(\operatorname{F}\left(s\right)^{-1} \operatorname{F}\left(\frac{a}{s}\right) + \operatorname{F}\left(\frac{b}{t}\right)\right)}{= \operatorname{F}\left(a, \operatorname{F}\left(s\right)^{-1} + \operatorname{F}\left(b\right) \operatorname{F}\left(t\right)^{-1}} = \operatorname{F}\left(\frac{a}{s}\right) + \operatorname{F}\left(\frac{b}{t}\right)$$

$$\frac{\operatorname{F}\left(\frac{a}{s} + \frac{b}{t}\right) = \operatorname{F}\left(\frac{ab}{st}\right) = \operatorname{F}\left(ab\right) \operatorname{F}\left(st\right)^{-1}}{= \operatorname{F}\left(a, \operatorname{F}\left(s\right)^{-1} + \operatorname{F}\left(b\right) \operatorname{F}\left(t\right)^{-1}} = \operatorname{F}\left(a, \operatorname{F}\left(s\right)^{-1} + \operatorname{F}\left(b\right) \operatorname{F}\left(t\right)^{-1}}{= \operatorname{F}\left(a, \operatorname{F}\left(s\right)^{-1} + \operatorname{F}\left(b\right) \operatorname{F}\left(t\right)^{-1}} = \operatorname{F}\left(a, \operatorname{F}\left(s\right)^{-1} + \operatorname{F}\left(b\right) \operatorname{F}\left(t\right)^{-1}}{= \operatorname{F}\left(a, \operatorname{F}\left(s\right)^{-1} + \operatorname{F}\left(a\right) + \operatorname{F}\left(s\right)^{-1}} = \operatorname{F}\left(a, \operatorname{F}\left(s\right)^{-1} + \operatorname{F}\left(a\right) + \operatorname{F}\left(s\right)^{-1} + \operatorname{F}\left(a\right) + \operatorname{F}\left(s\right)^{-1} + \operatorname{F}\left(a\right) + \operatorname{F}\left(s\right)^{-1}}{= \operatorname{F}\left(a\right) + \operatorname{F}\left(s\right)^{-1}} = \operatorname{F}\left(a\right) + \operatorname{F}\left(s\right)^{-1} + \operatorname{F}\left(a\right)^{-1} +$$

Note: All those constructions can be done for modules (modules of practions relative to S are modules (S'M) over S'R build our of R-modules (M). See HW7.