Lecture 21: Local rings \& ring of fractions
Recall: R comuntatise is a local sing if it has a unique maximal ideal
si More Prat rings

- Local rimes can be characturged by their prep of units:

Proposition: R is leal if sonly it the set of all won-unuto of R is an ideal of R.
BF/ \Leftrightarrow set $I=R \backslash R^{x}$. Assess R is leal with unique maximal ideal m. Since $m \subseteq R$, we hare $m \subseteq I$.
Crusenely if $x \in R, R^{x}$, then (x) is a proper ideal \& we can find a marl ideal of R containing x. Since R is boreal, $x \in m$. Thus $R, R^{x} \subseteq m \subseteq R \backslash R^{x}$ gives $m=R \cdot R^{x}$, so $R \cdot R^{x}$ is an ideal of m.
(\Leftarrow) If $m=R, R^{x}$ is an ideal, then m is maximal Any $x \notin m$ will be a unit so if $a \supsetneqq m$ is an ideal with $x \in O \subset m$, we cunclude $\alpha=(1)=R$.
Now, if b is any perter ideal of R, then $b \subseteq R, R^{x}$, so $b \subseteq m$. Then, m is the unique maximal ideal of R.
Example: $R=\mathbb{K}[x] /\left(x^{2}\right)=\left\{f_{(x)}:=a_{0}+a_{1} \bar{x}+a_{2} \bar{x}^{2} \quad a_{0}, a_{1}, a_{2} \in \mathbb{K}\right\}$ Claim: Fir a unit $\left.\Leftrightarrow a_{0} \in \mathbb{K}, ~ 30\right\}$

$$
\begin{aligned}
& \text { Sf/ }\left(a_{0}+a_{1} \bar{x}+a_{2} \bar{x}^{2}\right)\left(b_{0}+b_{1} \bar{x}+b_{2} \bar{x}^{2}\right)=1 \\
& \Leftrightarrow \begin{cases}a_{0} b_{0}=1 & b_{0}=a_{0}^{-1} \quad\left(s 0 a_{0} \neq 0\right) \\
a_{0} b_{1}+a_{1} b_{0}=0 & \text { ie } \quad b_{1}=-a_{1} a_{0}^{-2} \\
a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}=0 & b_{2}=a_{0}^{-1}\left(-a_{0}^{-1} a_{2}+a_{0}^{-2} a_{1}^{2}\right)\end{cases}
\end{aligned}
$$

Cnclucle: $R, R^{x}=(x)$ so it's an ideal. Pappsitian $\Rightarrow R$ isforal.
$\frac{\text { Example 2: Fix }}{(H w 7)} p \in \mathbb{Z}_{\geqslant 2}$ prime a set

$$
\left.R=\left\{\left.\frac{a}{b} \in \mathbb{Q} \right\rvert\, \quad p \times b \& \operatorname{gcd}(a, b)=1\right\} \quad \text { (usualiname } \mathbb{Z}_{(p)}\right)
$$

Claim 1: R is a ring (sebring of \mathbb{Q})

$$
\begin{aligned}
& \text { - } \frac{0}{1}, \frac{1}{1} \in R \\
& \text { - } \frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}=\frac{a_{1} b_{2}+a_{2} b_{1}}{b_{1} b_{2}} \\
& p X b_{1}, p X b_{2} \Rightarrow p X b_{1} b_{2} \\
& \Rightarrow \frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}} \in R \\
& \Rightarrow p X \frac{b_{1} b_{2}}{\delta c d\left(c, b_{1} b_{2}\right)} c=a_{1} b_{2}+q_{2} b_{1} \\
& \text { - } \frac{a}{b} \in R \Rightarrow \frac{-a}{b} \in R v \\
& \text { - } \frac{a_{1}}{b_{1}} \cdot \frac{a_{2}}{b_{2}}=\frac{a_{1} a_{2}}{b_{1} b_{2}} \quad p+b_{1}, p X b_{2} \Rightarrow p X b_{1} b_{2} \\
& \Rightarrow \text { pf } \frac{b_{1} b_{2}}{\operatorname{scd}\left(c, b_{1} b_{2}\right)} \quad c=a_{1} a_{2} \\
& \Rightarrow \frac{a_{1}}{b_{1}} \cdot \frac{a_{2}}{b_{2}} \in R
\end{aligned}
$$

Moreover $R^{x}=\left\{\frac{a}{b}: a, b \in \mathbb{Z}_{\neq 0} \operatorname{gcd}(a, b)=1 \quad p \times a, p \times b\right\}$ $\Rightarrow R^{x} \backslash R=(p)=1 R$ is an ideal. $\Rightarrow R$ is local.

E2. Ring of factions.
Def: Fix a commutation ring R \& $S \subset R$. We say S is a multiplicatincly closed set if:
(i) $0 \notin S \quad m$ sthenvise evealizatims gives a set with $0=1$.
(ii) $1 \in S$
(iii) $a, b \in S \Rightarrow a b \in S$.

- Equiraluce relation \sim in $R \times S$:
$(a, s) \sim(b, t) \Leftrightarrow \exists s^{\prime} \in S$ with $s^{\prime}(a t-b s)=0$

Do The ring of paction of R relative to S, denoted by $S^{-1} R$ is the sit $R \times S / \sim$ with
(1) Addition: $(a, s)+(b, t)=(a t+b s, s t)$
(2) Multiplication: $(a, s) \cdot(b, t)=(a b, s t)$
(3) Neutral elements: $0=(0,1) \& 1=(1,1)$
(Think of $(a, s) \mathrm{m} R^{-1} S$ as $\frac{a}{s}$.)
Special case: R is an integral domain (no zendinisses)
Then $S=R, 30\}$ is a multiplicatisely closed ret.
Then $S^{-1} R$ is a field called the field of factions sometimes denoted by Quot (R) $(a, s) \neq(0,1)$ is insectile \& $(a, s)^{-1}=(s, a)$.

$$
(\Leftrightarrow a \neq 0)
$$

Ex: (1) $R=\mathbb{Z}, \quad Q_{\operatorname{vot}}(R)=Q \quad(a, b) \leftrightarrows \frac{a}{b}$
$(a, b) \sim(c, d) \Leftrightarrow \exists s \in \mathbb{Z}, 30\}$ with $s(a d-b c)=0$ But \mathbb{Z} is a domain, so $a d-b c=0 \quad$ (since $s \neq 0$) If $\begin{aligned} m & =\rho c d(a, b) \\ n & =\operatorname{scd}(c, c)\end{aligned}$ then $\frac{a}{m} \frac{d}{n}=\frac{b}{m} \frac{c}{n}$ frees

$$
\frac{a}{m}=k \frac{c}{n} \quad \Delta \frac{d}{n}=k \frac{b}{m} \quad \text { fo } k \in \mathbb{Z}
$$

In unclusin: $\frac{a}{b}=\frac{a / m}{b / m}=\frac{c / n}{d / n}=\frac{c}{d}$.
(2) $R=\mathbb{Z}[x], \quad Q$ not $(R)=Q(x)=\left\{\frac{P(x)}{Q(x)}: \underset{\substack{P, Q \in Q \\ Q \neq 0}}{P(x)}\right\}$ Another special example if S

- R commutative $S=\operatorname{set}$ of muzerodinisors of R

Then: S is multiplicatively closed

Def: $S^{-1} R=$ total ring of hactions $=$ Quot (R)

- Frum prlymmideb to Lauunt prlynmiab:
$\left.S=31, x^{i}: i \geqslant 1\right\} \in \mathbb{K}[x]$ is multiflicatienly dosed.
Thum: $S^{-1} \mathbb{K}[x]=\mathbb{K}\left[x, x^{-1}\right]$.

$$
(a, s) \sim(b, t) \quad \Leftrightarrow \quad x^{n}(a t-b s)=0 \quad n \geqslant 0
$$

Again, at $-b s=0, s, t \in S$ so $s=x^{k}, t=x^{l}$

$$
\begin{array}{rlrl}
\text { So } a & =b x^{k-l} \in \mathbb{K}[x] & & \text { if } k \geqslant l \\
b & =a x^{l-k} \in \mathbb{K}[x] & & \text { if } l \geqslant k \\
\Rightarrow \frac{a}{s} & \in \mathbb{K}\left[x, x^{-1}\right] . &
\end{array}
$$

- A dequirate example.
$R=\mathbb{Z} / 6 \mathbb{Z} \supset S=31,2,4\}$ mult. closed
In $S^{-1} R \quad \frac{r}{S}=0\left(=\frac{0}{1}\right) \Leftrightarrow \exists t \in S$ with $t(r \cdot 1-s \cdot 0)=0$ $t r=0$
So $\frac{3}{s}=0 \quad \forall s \in S \quad(2.3=0)$

$$
\frac{1}{5} \neq 0, \frac{2}{5} \neq 0, \frac{4}{5} \neq 0, \frac{5}{5} \neq 0
$$

Claim: $S^{-1} R=\left\{0,1, \frac{1}{2}\right\}$
(HW7)
\$3 Unirusal Parfuties:
Fix R commutative rimg \& $S \subset R$ mulliflicaterely dosed
Pappsitim: We hase a natural ring hummurfhisu

$$
j_{s}: \quad \begin{aligned}
& R \\
& a
\end{aligned} \int^{-1} R{ }^{-1} \quad(=\text { class of }(9,1))
$$

such that for every $t \in S, j s(t)$ is insectile in $S^{-1} R^{121(5)}$ (its inseese is $\frac{1}{t}$)
Proof: Definition of the ring structure in $S^{-1} R$ makes $j s$ a ring homomorphism.

$$
\text { - }\left(\frac{t}{1}\right)^{-1}=\frac{1}{t} \text { because }(t, 1) \cdot(1, t)=(t, t)=(1,1)
$$

Lemma: $\operatorname{Ker}(j s)=\{a \in R: \exists s \in S$ with $s a=0\}$

$$
\text { Pf/ js }(a)=\frac{a}{1}=\frac{0}{1} \Leftrightarrow \exists s \in S \text { st } s(a-1-0 \cdot 1)=0 \text {, ie S } a=0
$$

- Next, we state the umisesal property satisfied by $S^{-1} R$:

Theorem: Fix B another commutative ring \& let $A: R \longrightarrow B$ be a ring humanirhism such that $\forall t \in S: f(t) \in B$ is insectile
Then, there exists a unique ring homomrphison $\tilde{F}: S^{-1} R \longrightarrow B$ making $\tilde{f}_{0} j_{s}=f$
Proof Want to show

Set $\tilde{f}\left(\frac{a}{s}\right):=f(a) f(s)^{-1}$

- Well-defing: $\quad \frac{a}{s}=\frac{b}{t} \Leftrightarrow \exists s^{\prime} \in S$ with $s^{\prime}(a t-b s)=0$

Then $f(s)\left(f_{(a)} f(t)-f(b) f(s)\right)=0$

$$
\hat{B}^{*} \quad \Rightarrow \quad f(a) f(t)=f(b) f(s)
$$

So $\quad f(a) f(s)^{-1}=f(b) f(t)^{-1}$ in B

- Ring lummorflism:

$$
\begin{aligned}
& \text { - } \tilde{f}\left(\frac{a}{s}+\frac{b}{t}\right)=f\left(\frac{a t+b s}{s t}\right)=f(a t+b s) f(s t)^{-1} \\
& =(f(a) f(t)+f(b) f(s)) f(s)^{-1} f(t)^{-1} \\
& =f(a) f(s)^{-1}+f(b) f(t)^{-1}=\tilde{f}\left(\frac{a}{s}\right)+\tilde{f}\left(\frac{b}{t}\right) \\
& \text { - } \tilde{f}\left(\frac{a}{s} \frac{b}{t}\right)=\tilde{f}\left(\frac{a b}{s t}\right)=f(a b) f(s t)^{-1} \\
& =f(a) f(b) f(s)^{-1} f(t)^{-1}=f_{(a)} f(s)^{-1} f(b) f_{(t)}^{-1} \\
& =\tilde{f}\left(\frac{a}{\delta}\right) \tilde{f}\left(\frac{b}{t}\right) \text {. } \\
& \text { - } \tilde{f}(1)=\tilde{f}\left(\frac{1}{1}\right)=f(1) f(1)^{-1}=1 \cdot 1^{-1}=1 \text {. } \\
& \text { - } \tilde{f}_{\circ} j_{s}(a)=\tilde{f}\left(\frac{a}{1}\right)=f_{(a)} f_{(1)^{-1}}=f_{(a)} 1^{-1}=f_{(a)} \cdot \square
\end{aligned}
$$

Note: All these constructions can be dine for modules (modules of paction elative to S are vurdules $\left(S^{-1} M\right.$) oren $S^{-1} R$ build sen of R-modules (M). See HW7.

