LZZU Lecture 22: I deals of ring of braching, localization Recall: R commutative, S multiplicatively closed subset of R (1∈S; o∉S; if a, S∈S then ab ∈S) gives S'R=R×S, with (a, s) ~ (b,t) = Fr∈S with r(at-bs)=0. Write a pr the class of (9,s) • S'Risaning with $\frac{a}{s} + \frac{b}{t} = \frac{at+bs}{st}$; $\frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st}$ Neutral element : 0=0 & 1=1 Name : Ring of fractions adative to S. • $j_{S}: R \longrightarrow S'R$ $j_{S}(r) = r$ (= class of (r, i)) is a ring hom * $j_S(t) = t$ is a unit in S⁻¹R for each tES, with innerse t. Same construction for module of fractions M and $S^-M = M \times S$. 1. I deals in S⁻¹R: \$1. Ideals in STR: Fix R commutative ring, SCR mult closed a js: R-S'R the natural ring himmonorphism. given or CR ideal, we define : stor = ideal in str zenerated by js(or). Throum: Every ideal in S'R is of this form (= S'or for some OCCR ideal) Furthermore, $S^{-1}\partial c = S^{-1}R \implies S \cap \partial c \neq \phi$. Brook: Use js: R -> S'R Let $b \subset S'R$ be an ideal & set $\partial C = j_{S}'(b)$. . We know ∂c is an ideal because js is a ring hummerphism . Claim: $S' \partial c = b$ $\frac{\text{(laim)}}{\text{SF}/(\text{S})} = \frac{1}{8} = \frac{1}{$ So $S' = S' R(\underline{a}; a \in \alpha) \subseteq b \in S' R$

(2) Pid x & b C S R. Thun,
$$x = \frac{x}{5}$$
 for some y $\in R$, S $\in S$
 $\Rightarrow \frac{1}{5} = \frac{1}{5} = \frac{1}{5} \cdot \frac{1}{5} \in b$ so $y \in OL$ so $b \in S^{-1}OL$.
 $\in R \in b^{-1}$
To the last yeat:
If se S (OL, write $1 = \frac{1}{5} \in S^{-1}OL$. $(+=\frac{1}{5}, \frac{1}{1(S^{-1}-15)}=0)$
(orready, assume $1 \in S^{-1}OL$. Thun, $\exists = \frac{1}{2}, \frac{1}{1(S^{-1}-15)}=0$
(orready, assume $1 \in S^{-1}OL$. Thun, $\exists = \frac{1}{2}, \frac{1}{1(S^{-1}-15)}=0$
(orready, assume $1 \in S^{-1}OL$. Thus, $\exists = \frac{1}{2}, \frac{1}{1(S^{-1}-15)}=0$
(orready, assume $1 \in S^{-1}OL$. Thus, $\exists = \frac{1}{2}, \frac{1}{1(S^{-1}-15)}=0$
(orready, assume $1 \in S^{-1}OL$. Thus, $\exists = \frac{1}{2}, \frac{1}{1(S^{-1}-15)}=0$
(orready, assume $1 \in S^{-1}OL$. Thus, $\exists = \frac{1}{2}, \frac{1}{1(S^{-1}-15)}=0$
(orready, assume $1 \in S^{-1}OL$. $\frac{1}{1(S^{-1}-15)}=\frac{1}{5}$ with $b = \frac{1}{2}$ b; $\in OL$
So $1 = \frac{1}{5}$ for $b \in OL$, set $S = \frac{1}{5}$ b; $c \in OL$
So $1 = \frac{1}{5}$ for $b \in OL$, set $S = \frac{1}{5}$ b; $c \in OL$
So $1 = \frac{1}{5}$ for $b \in OLOL$.
 $\frac{1}{5}$ $\frac{1}{5}$
Particum Parme deals in $S^{-1}R$ are of the form $S^{-1}B$, where
 $B \in R$ is a firme ideal with $B \cap S = D$.

Brod Let
$$q \neq S^{-1}R$$
 be a prime ideal. By the proof of the previous
Theorem, we know $q = S^{-1}OC$ where $OC = jS^{-1}(q)$.
Since q is prime æjs is a ring hommorphism, ve know OC
is a prime ideal of R . Since $q \neq S^{-1}R$, we must have $OC \cap S = O$
(moresely, given $B \neq R$ prime with $B \cap S = O$, we want to show
 $S^{-1}B \in S^{-1}R$ is a prime ideal.

Proferences follows aime
$$8NS = \beta$$

 $S^{-1}8$ is an ideal of $S^{-1}R$ by the Theorem.
 $\frac{a}{S} \cdot \frac{b}{E} \in S^{-1}8$ with $a, b \in R$ site R we get
 $\frac{ab}{I} = (\frac{s}{I}) \frac{ab}{SL} \in S^{-1}8 \implies ab \in j_{S}^{+}S^{-}8) = 8 \xrightarrow{\text{Brinn}} a \in 8 \text{ or } b \in 8.$
 $\Rightarrow \frac{a}{S} \in S^{-1}8 \quad \pi \quad \frac{b}{L} \in S^{-1}8.$
Summary: R ingo a modules of fractions for R commutative ring
 $S \subset R$ mult closed wit $S^{-1}R = another commutative
(HW7) Π : R - module $S^{-1}R$ is of the form $S^{-1}R$ - module.
Prof: (i) Every ideal of $S^{-1}R$ is of the form $S^{-1}R$ for $A \subset R$ ideal
 $a \in S^{-1}R \subset S^{-1}R \subset S \cap R \neq \beta$.
(2) Prime ideals of $S^{-1}R \subset S^{-1}R \subset S^{-1}R$$

Localizations are un ful tools to decide when modules are trinial Ilse precisely: $\iff (3) M_{m=0} \quad \forall M \in \mathbb{R}$ malided (Inoo: (1) => (2) => (3) is clear (mod ideals ar prime) To finish, we prove (3) => (1): We argue by intradiction. Pick me Migot & let & = Ann (m) & R. Pick MCR maximal ideal with $\mathcal{OC} \subset \mathcal{M}$. By hypotheses $\Pi_{\mathcal{M}} = 0$, so m = 0 in M moning 7 sERIM with sn = 0. This connot haffen since (RM) 1Ann (m) = Ø. Thrown Z: Assume Ris an integral domain. Then: R = (R m = (R g M model & gring ideal ideal 3roo . Next Time .