Lecture 23: Modules of factions; Nretherian rimes
s) Localization:

Recall: R commutative ins, $P \subset R$ prime ideal
Then: $S:=R, P \subset R$ is a mull. closed set
$R_{8}=S^{-1} R$ is a local ring with $m \times l$ ideal $R_{P} P=S^{-1} P$.
Key observation: If R is a domain, then:

We view R \& R_{p} as subrings of Q wot (R)
Thurum 1: Assume R is an integral domain. Then:

$$
R=\bigcap_{\substack{\gamma \text { tum } \\ \text { ideal }}} R_{\gamma}^{\gamma}=\bigcap_{m \text { mad }}^{\text {ideal }} R_{m}
$$

\subseteq ideal \subseteq ideal vieurd in Quit R by key obsenation
Proof: Write $\widetilde{R}=\bigcap_{m \text { mol }} R_{m} \geq R$. We view \tilde{R} / R as an R-module
Then: $\tilde{R}=R \Leftrightarrow \tilde{R} / R=0$ as an R-module
Since $\tilde{R} \subset Q \operatorname{Qoot}(R)$ we wite $\bar{r} \in \tilde{R} / R \subset \frac{Q \operatorname{qut}(R)}{R}$ as $\frac{\bar{a}}{b}$ with $\frac{a}{b} \in Q u o t(R)$ - We want to show $a \in(b)$, so $\frac{a}{b} \in R$.

Consider $I=\left\{t \in R: t \frac{a}{b} \in R\right\}=\operatorname{Amn}\left(\frac{a}{b}\right)$
This means $\frac{t a}{b}=\frac{a^{\prime}}{1}$ fr $a^{\prime} \in R$, ie $\quad t a=a^{\prime} b$
Thees $I=\{t \in R: \quad t a \in R(b)\}=(R(b): a)$ simaRisadmain

- If $I=(1)$, then $a=1-a \in(b)$
- Othenvis. $\exists m$ mol ideal of R with $I \subseteq m \nsubseteq R$. Since $\underset{\sim}{\in-\frac{a}{b}} \in \mathbb{R} \subseteq \tilde{R}$ we have $\frac{a}{b} \in \tilde{R} \subseteq R_{m} \quad$ So $\frac{a}{b}=\frac{a^{\prime}}{b^{\prime}}$ with $b^{\prime} \notin m$

$$
b^{\prime} a=a^{\prime} b \text { so } \quad b^{\prime} \in I \subseteq m \quad \text { Catt ! }\left(b^{\prime} \in I c m \& b^{\prime} \notin m\right)
$$

\$.2. Modules of pactims and their humonirfhisoms:
Recall: Fix R commutative ring, $S \subset R$ mull dosed set, M an R-module

$$
\begin{aligned}
& \text { Write } \frac{m}{s} \text { fothe class of }(m, s) \text {. } \\
& \Leftrightarrow \exists r \in S \text { with } \\
& r\left(s^{\prime} \cdot m-s \cdot m^{\prime}\right)=0 \in \mathbb{M}
\end{aligned}
$$

- Let M, N be Two R-modules \& set $G: M \longrightarrow N \quad R$-tinier Then $S^{-1} f: S^{-1} M \longrightarrow S^{-1} N$ is $S^{-1} R$ limar ("extend scalars $\frac{m}{\Delta} \longmapsto \frac{f(m)}{\Delta} \quad$ from $\left.R \tau_{0} S^{-1} R^{\prime \prime}\right)$
Pepprition: Let $0 \longrightarrow M_{1} \xrightarrow{F} M_{2} \xrightarrow{\delta} M_{3} \longrightarrow 0$ be a secs of R-linear mops between R-modules. Then, the foll roving sepeema of $S^{-1} R$-linear maps is exact:

$$
0 \longrightarrow S^{-1} M_{1} \xrightarrow{S^{-1} f} S^{-1} M_{2} \xrightarrow{S^{-1} g} S^{-1} M_{3} \longrightarrow 0
$$

Proof: (1) $\operatorname{Kec}\left(S^{-1} f\right)=3 \frac{m}{s} \in S^{-1} \Pi_{1}: \frac{f(m)}{s}=0$ in $\left.S^{-1} \Pi_{2}\right\}$ Pick $\frac{m}{s} \in \operatorname{ker}\left(S^{-1} f\right)$, so $\frac{f(m)}{s}=0$. Thun, $\frac{f(m)}{1}=s \cdot \frac{f(m)}{s}=s \cdot \frac{0}{1}=\frac{s \cdot 0}{1}=\frac{0}{1}$ $\Rightarrow \exists r \in S$ with $r(1 \cdot f(m)-1 \cdot 0)=r f(m)=0 \quad$ so $f(r m)=r f(m)=0$. $\Rightarrow r_{m} \in \operatorname{Ker}(G)=0 \quad$. Then $\frac{m}{s}=\frac{r m}{r s}=\frac{0}{r_{s}}=\frac{0}{1}$
Conduce: $\operatorname{ker}\left(S^{-1} f\right)=\{0\}$.
(2) $S^{-1} g$ is senjectixe: Let $\frac{m_{3}}{s} \in S^{-1} M_{3}, m_{3} \in \Pi_{3}, s \in S$ Since g is senjective $\exists m_{2} \in \Pi_{2}$ st $g\left(m_{2}\right)=m_{3}$ So $\frac{m_{3}}{s}=\rho\left(\frac{m_{2}}{s}\right)=S^{-1} g\left(\frac{m_{2}}{s}\right)$. Cunclucles: $S^{-1} g$ is seerjectise.
(3) $\operatorname{ker}\left(S^{-1} g\right)=\operatorname{Im}\left(S^{-1} f\right)$.
$\left.(\underline{2})\left(S^{-1} g\right) \cdot\left(S^{-1} f\right)\left(\frac{m_{1}}{s}\right)=S^{-1}(g)\left(\frac{f\left(m_{1}\right)}{s}\right)=\frac{g\left(f\left(m_{1}\right)\right.}{s}\right)=\frac{0}{s}=0$ So $\operatorname{Im}\left(S^{-1} f\right) \subseteq \operatorname{ker}\left(S^{-1} g\right)$
(c) Conseusely, if $\frac{m_{2}}{s} \in \operatorname{ker}\left(S^{-1} g\right)$ then $\frac{\rho\left(m_{2}\right)}{s}=\frac{0}{1}$

$$
f\left(m_{2}\right)=\Delta \frac{g\left(m_{2}\right)}{s}=\frac{0}{1} \text {. By def, } \exists r \in S \text { with } r g\left(m_{2}\right)=0 \text { in } M_{3}^{L 23}
$$

So $r m_{2} \in \operatorname{ker} g^{g}=I_{m f} f$, ie $r m_{2}=f\left(m_{1}\right)$ for sum e $m_{1} \in \Pi_{1}$
Then $\frac{m_{2}}{s}=\frac{r m_{2}}{r_{s}}=\frac{f\left(m_{1}\right)}{r_{s}}=S^{-1} f\left(\frac{m_{1}}{r_{s}}\right) \in r_{m} S^{-1} f$.
Obs. We con use thees to fire an alternative proof of Than 1 (see HW 8)
Corollary: (1) Let $N C M$ be submidule ores R.
Then $\frac{S^{-1} M}{S^{-1} N} \simeq S^{-1}(M / N)$. (as $S^{-1} R$ - modules)
 as $S^{-1} R$-modules.
(3) If $S \cap r=\varnothing$, then $\bar{S}=$ image of S under $R \longrightarrow R / o r$ is multiflicatiscly closed \& $\bar{S}^{-1}(R / a)$ is a ring \& an $S^{-1} R$-module.
Moore. $S^{-1}(R / \varnothing C) \xrightarrow{\Psi} \bar{S}^{-1}(R / a x), \Psi\left(\frac{\bar{r}}{S}\right)=\frac{\bar{s}}{\bar{S}}$ is an iso of $S^{-1} R$-modules
Bff. (1) Use $0 \longrightarrow N \longrightarrow \Pi \longrightarrow \Pi / N \longrightarrow$ res $1 / R$-mind
Then $0 \longrightarrow S^{-1} N \longrightarrow S^{-1} \Pi \longrightarrow S^{-1}(\Pi / N) \longrightarrow 0$ is secs. $V S^{-1} R-m \operatorname{cod}$
(2) Is a special case of (1): ideals of R are R-murlules.
(3) \bar{S} is melt. closed $\operatorname{mn} R \cdot \overline{1} \cdot 0 \notin \bar{S} \mathbb{S} \leftrightarrow \sin \pi=\varnothing \vee \begin{aligned} & \cdot \bar{a}, \bar{b} \in \bar{S} \\ & \Rightarrow \bar{a} \bar{b}=\overline{a b} \in \bar{S} V\end{aligned}$

Then: $\bar{S}^{-1}(R / O C)$ is the ring of factions of R / ∂ relative $t_{0} \bar{S}$.
$\begin{array}{ll}\text { BuT it is also an } S^{-1} R \text {-module via } \\ & S^{-1} R\end{array}=\frac{a}{b} \cdot \frac{\Gamma}{\bar{J}}:=\frac{\overline{a r}}{S_{S}^{-1}(R / a)} \in \bar{S}^{-1}(R / \alpha)$

- is will $^{\text {def }}: \bar{r} \frac{\bar{r}}{s}=\frac{r^{\prime}}{s^{\prime}} \Leftrightarrow \exists t \in S$ st $t\left(s^{\prime} \bar{r}-s \overline{r^{\prime}}\right)=0 \mathrm{~m} / \mathbb{L}$.

$$
\begin{aligned}
& \Leftrightarrow t\left(\frac{\left.\left.s^{\prime} r-s r^{\prime}\right) \in a_{\&} t \in S \Rightarrow \overline{s^{\prime}} \Rightarrow \overline{s^{\prime}}-\bar{s} \bar{r}^{\prime}\right)=\overline{0} \text { in } R / d^{\&} \bar{E} \in \bar{s} .}{\Rightarrow \frac{r}{s}=\frac{r^{\prime}}{s^{\prime}} \text { in } \bar{s}^{-1}(R / a c) .} .\right.
\end{aligned}
$$

- The mop Ψ is $S^{-1} R$-linear by construction.
- W is infective: $\overline{\bar{r}}=0 \Leftrightarrow \exists \bar{s}^{\prime} \in \bar{S}$ with $\overline{s^{\prime}}(\bar{r} \cdot \bar{T})=0 \mathrm{~m} R / a$ $\Leftrightarrow \exists s^{\prime} \in S \quad-S^{\prime}(r .1) \in x$

$$
\Leftrightarrow \bar{F}=0 \text { in } S^{-1}(R / \Omega) \Rightarrow \frac{\bar{r}}{s}=0 \text { in } S^{-1}(R / x)
$$

- Ψ is sunjectise by construction: $\frac{\bar{r}}{\bar{s}}=\Psi\left(\frac{\bar{r}}{5}\right)$.

83. Finiteness properties of rings: Nretherian \& Atimian rings

In 1888, Kronecker published his findings on "ideal = product of prime ideals" research. He made a uncial assemption f Ω idols ser prlynaial rings: that they are finitely generated. This fact was only later proven by Hilbert (Hilbert Basis Thin). This peofety of rump ("ency ideal is fimitly generated") has the following aximatization
Definition: A commutative ring R is called Neetherian if foresery chain of ideals of $R \quad x_{0} \subseteq a_{1} \subseteq x_{2} \subseteq x_{3} \subseteq \cdots \cdot$
then is $k \geqslant 0$ with $a_{k}=a_{k+1}=\cdots$ [ACC = Ascending chain condition]

Theorem 1: The following conditions on a comitative ring $R_{\text {are }}$ equivalent:
(1) R is Nrtherian
(2) Even unempty set I of ideals of R has a maximal element
(3) Every ideal $x \subseteq R$ is privily generated.

Poof: $(1) \Rightarrow(2)$ Let $a_{0} \in \mathcal{Y}$. If a_{0} is not maximal, \exists $a_{1} \in \mathscr{Y}$ with or $\subseteq O r_{1}$. Continuing in this fachim, we get an ascending chain of ideals $\alpha_{0} \not f \alpha_{1} \subset \ldots$.
That doesn't stabilize. Cute! Then $\exists \mathscr{X}_{k}$ maximal element of y.
$(2) \Rightarrow(3)$ Let a be an ideal. Consider the set $y=3 \alpha^{\prime} \subseteq \mathscr{a}: \alpha^{\prime}$ is a fin. gen. ideal of $\left.R\right\}$ We rider y by inclusion.
By (2), this set has a maximal element, say $\tilde{\sim}$.

If $\tilde{a} \notin a$, pick $x \in a, \tilde{a}$. Then $(\tilde{a}, x) \in \mathcal{J}, 43 \sqrt{4}$ contradicting the moximality of $\tilde{a}<(\tilde{a}, x)$. Hence $\tilde{a}=a$, which mans a is finitely generated since $a \in \mathcal{Y}$.
$(3) \Rightarrow(1)$ Let $a_{0} \subset a_{1} \subset \ldots$ be a chain of ideals of R Tale $a=\bigcup_{i=0}^{\infty} a_{i} \subset R$
By custunction, O is an ideal of R, thee finitely jeuerated. by elements $a_{1}, \ldots, a_{n} \in O$. Now, each $a_{l} \in C_{j e}$ for sue $j_{e} \geq 0$ Thus, $a=a_{j}$ fo $j=\operatorname{mox}\left\{j_{1}, j_{2}, \cdots, j_{n}\right\}$ and so $\alpha=a_{j}=a_{j+1}=\cdots$ The chain terminates, so A is Notherian,

