L23 [1] Lecture 23: Modules of practions; Noetherian rings & Localization : Recall: R commutative ring, PCR prime ideal Then: S := R B CR is a mult closed set Rp = S'R is a local ring with mxl ideal Rp8=S'P. key observation: If R is a domain then: $R \longrightarrow R_{g} \longrightarrow Quot(R) =: (R - 10E)^{T}R$ We view R& Ry as subrings of Quet(R) Thursen 1: Assume Ris an integral domain. Then: R = MR = MR = MR ^G ideal viewed in Quet R by key Observation <u>Broof</u>: Write $\tilde{R} = MR = R$. We view \tilde{R}_R as an R-module myd Then: $\tilde{R} = R \iff \tilde{R}_R = 0$ as an R-module Since $\tilde{R} \subset Quot(R)$ we write $\overline{r} \in \tilde{R}_{R} \subset Quot(R)$ as $\overline{\underline{a}}$ with $\underline{\underline{a}} \in Quot(R)$. We want to show a e(b), so geR. Consider $I = 3 t \in R : t_a \in R \} = Aven \left(\frac{a}{b}\right)$ This means $\frac{ta}{5} = \frac{a'}{1} \int r a' e R$, ie ta = a'bThus $I = \{ t \in R : ta \in R(b) \} = (R(b); a) since Risalumain$ • LF = (1), then $R = 1 \cdot R \in (b)$. Otherwise, I m mod ideal of R with I & M & R. Since r-a ERCR we have $c \in \overline{R} \in \overline{R}_m$ So c = c' with $b' \notin m$ b'a= a'b so b'EI EM (mti! (b'EICM & b'&m)

S2. Il studes of fractions and their jummerglaims:
Readle: Tix R commutative pring, SCR mult closed set, H an R-module
and S⁻¹M = module of fractions relative to S = Mx S₁ (m, s) of (m/s)
(normal area S⁻¹R) (m/s).
Write
$$\frac{m}{2}$$
 for the class of (m/s).
Let M, N be two R-modules a set f: M \rightarrow N R-laring
Thun S⁻¹F: S⁻¹M \rightarrow S⁻¹N (s S⁻¹R linuar ("extend scalars
 $\frac{m}{2} \rightarrow \frac{f(m)}{4}$ from R to S⁻¹R")
Reprodum: Let $0 \rightarrow M$, $\frac{f(m)}{4} \rightarrow \frac{1}{3} \rightarrow 0$ be a set of set $1 \rightarrow N$
R-linuar maps between R-modules. Thus, the following sequence
of S⁻¹R -linuar maps is exact:
 $0 \rightarrow S^{-1}M, \frac{S^{-1}F}{4} S^{-1}M_2 - \frac{5}{3} S^{-1}M_3 \rightarrow 0$.
("lixelingtim
 $1 \rightarrow \frac{f(m)}{4} = 0 \rightarrow f(m) = f(m) = 0 \text{ in S-1H}_2 f$
Reduces the rest of $1 \rightarrow \frac{f(m)}{3} = 0$.
 $3 ned : (1)$ Ker (S⁻¹F) $= \frac{1}{3} = 0$. Thus $\frac{f(m)}{3} = 0$ in S⁻¹H}_2 f
Reduces (S⁻¹F) $= \frac{1}{3} = \frac{1}{5} = \frac{1}{$

 $\Gamma g(m_2) = 0 in \Pi_3$ $\delta(m_z) = \frac{3}{2} \frac{g(m_z)}{2} = \frac{0}{1}$. By dd_r , $\exists r \in S$ with fs7 some m,∈∏, So rm2 Ekerg = Imf, ie rm2 = f(m1) Then $\frac{m_2}{s} = \frac{\Gamma m_2}{\Gamma s} = \frac{F(m_1)}{\Gamma s} = \frac{S'F(\frac{m_1}{\Gamma s})}{\Gamma s} \in Im S'F.$ Obs: Ne con use this to give an alternative proof of Thm 1 (see HW8) brollary: (1) Let NCM be submodule over R. Then $S'H \simeq S'(H_N)$. (as S'R-modules) S'N(2) In particular, for an ideal OCCR, we have $5^{-1}R \sim 5^{-1}(P/\alpha)$ as S'R-modules. (3) If $S \cap \mathcal{H} = \emptyset$, then $\overline{S} = image \vartheta | S$ under $R \longrightarrow R_{\sigma}$ is multiplicatively closed & $\overline{S'(R_{\sigma})}$ is a ring & an S'R-module. Moreover, $\overline{S'(R_{\sigma})} \xrightarrow{\Psi} \overline{S'}(R_{\sigma})$, $\overline{\Psi(\overline{s})} = \overline{\underline{s}}$ is an iso of S'R-modules $J_{1}(1)$ Use $0 \longrightarrow N \longrightarrow \Pi \longrightarrow \Pi \longrightarrow O$ ses $x R_{1}$ Then $0 \longrightarrow S'N \longrightarrow S'N \longrightarrow S'(N) \longrightarrow 0$ is set of S'R-mod (2) Is a special case of (1); ideals of R are R-modules
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(3) S is mult. closed in R • I ∈ S
(4) S is mult. closed in R • I ∈ S Then: $\overline{S}'(\overline{P}_{\alpha})$ is the ring of practime of \overline{P}_{α} relative to \overline{S} . But it is also an S'R-module via $\underline{a} := \overline{\underline{ar}} \in \overline{S}'(\overline{P}_{\alpha})$ $S'R = \frac{5}{5} := \overline{\underline{ar}} \in \overline{S}'(\overline{P}_{\alpha})$ $(s'r - sr') \in \partial (z + \varepsilon S) = \overline{t} (\overline{s'r} - \overline{sr'}) = \overline{o} \cdot n R/\partial (z + \varepsilon S).$ $= \overline{s} = \overline{s} \cdot n \overline{s} \cdot (R/\partial c).$ • The map Y is S'R-linear by construction. · <u>Y is injective</u>: <u>F</u> = 0 (=)] s' ∈ S with S' (F.T)= 0 m P/2 \Leftrightarrow 3 s'es - s'(r.i) \in x • <u>Y</u> is surjective by construction: $\frac{1}{5} = \Psi(\frac{1}{5})$.

\$3. Finiteness projecties of rings: Northenian & Actimian rings (23) In 1888, Knonecker published his findings on "ideal = product of grime ideals " research. He made a curcial assemption for ideals over polynamial rings ; that they are finitely generated. This pact was my later prosen by Hilbert (Hilbert Basis Thm). This projecty of rings ("enny ideal is printely generated") has the following aximatization Definition: A commutative ring R is called <u>Noetherian</u> if for every chain of ideals of R $\alpha_0 \subseteq \alpha_1 \subseteq \alpha_2 \subseteq \alpha_s \subseteq \cdots$ there is le 20 with OC = OC K+1 = [ACC = Ascending chain condition] Thurem! The following anditions on a commutative ring Race equivalent. (1) R is Northenian (2) Every umempty set I of ideals of R has a maximal element (3) Every ideal or CR is fraitely generated. Brook: (1) => (2) Let & e & . I & a is not maximal] a, eg with dro & or, . Continuing in this faching we get an ascending when of ideals or 5 or, 5 That doesn't stabilize. Cut. Then 3 & maximal element ø J. (2) => (3) Let & be an ideal. Consider the set I = 3 oc' coc : oc' is a fim. gen. ideal of R} We rider J by inclusion. By (2), this set has a maximal element, say &.

If $\tilde{\alpha} \subseteq \alpha$, pick $x \in \tilde{\alpha} \setminus \tilde{\alpha}$. Then $(\tilde{\alpha}, x) \in \mathcal{G}$, $u^{3}S$ entroducting the maximality of $\tilde{\alpha} < (\tilde{\alpha}, x)$. Hence $\tilde{\alpha} = \alpha$, which means α is finitely generated since $\delta x \in \mathcal{J}$. (3) =>(1) Let $\alpha_{0} \subset \alpha_{1}, \subset \ldots$ be a chain of ideals of R Take $\alpha = \bigcup_{i=0}^{U} \alpha_{i} : \subset \mathbb{R}$

By construction, OC is an ideal of R, thus finitely generaled by elements $a_{1,...,a_n} \in OC$. Now, each $q_{\ell} \in C_{j\ell}$ for some $j_{\ell} > 0$ Thus, $C\ell = C_{j}$ for $j = \max\{j_{1}, j_{2}, ..., j_{n}\}$ and so $C\ell = C_{j} = C_{j+1} = \cdots$ The chain terminates, so A is Northenian