§: Northerian Rings:
Recall A commutative ring R is Northerian if it satisfies ACC
(every ascanding chain of iduals stabilizer)
Theorem: If R is a commutative ring, the following an equivalent:
(1) R is Northerian
(2) Every unrempty set G of iduals of R has a maximual element
(2) Every idual or CR is fruitely generated.
(3) Every idual or CR is fruitely generated.
(5) If
$$F:A \longrightarrow B$$
 is a ring humanorphism with A,B commutative
Assume his anyteting. If A is Northerian (eg Z, C[X])
(4) If $F:A \longrightarrow B$ is a ring humanorphism with A,B commutative
Assume his anyteting. If A is Northerian is B.
(3) Rings of fractions of Northerian rings are Northerian. In
particular, brachizations preserve Northerianness
So $\mathcal{A} = (a_1, ..., a_n)$. Then $f = f(\mathcal{A}) = (f(a_1), ..., f(a_n))$.
Fing
Note: R is not Northerian rings need not be Northerian.
Ex: Take $R = C[x_1, x_2, ...] = \bigcup_{x \in N} C[x_1, x_2, ..., x_n]$
Note: R is not Northerian where the ascanding chain of ideals
 $\mathcal{A}_1 = (x_1) \subseteq \mathcal{A}_2 = (x_1, x_2) \subseteq ...,$ men terminates.
Note: R is a domain a R R C Quot (R) = field.
So R is a subering of Quot (R)
So R is a Subering of Quot (R)
So R is a Subering of Quot (R)
So R is a Northerian.

Hilbert Basis Them: Jf Ris Nottherian, so is R (x].
Hina
$$Z[x_1, ..., x_n] > K[x_1, ..., x_n]$$
 an Northerian for any field K.
To grow this result, we'll much the write of Northerian modules.
52. Northerian modules:
Fix R = commutative ring. e H an R-module.
Dif: We say M is Northerian if it satisfies the ascending chain
condition for submodules:
"Every chain of submodules $H_0 \subseteq \Pi_1 \subseteq \Pi_2 \subseteq \dots$ stabilizes
ie $\exists l \ge 0$ st $\Pi_2 = \Pi_{l+1} = \dots$ "
Ne have the following analog of Theorem 1:
Theorem 2: Fix R a commutative ring a flan R-module. TFAE:
(1) H is Northerian
(2) Every unempty set $\exists of submodules of H has a maximal element
(3) Every submodule of Π_1 is forted y preventied.
The proof is exactly the same as that of Them 1.
(modules. Then: Π_2 is Northerian if and only if, Π_1 Rigor.
 $\frac{R_{ood}}{R} = \infty$ submodules of Π_1 are submodule of Π_2 rin F.
(No S) Submodules of Π_1 are submodules of Π_2 rin F.
(1) Submodules of Π_1 are submodules of Π_2 rin F.
(2) Submodules of Π_1 are submodules of Π_2 rin F.
(3) Submodules of Π_1 are submodules of Π_2 rin F.
(4) $R = M_3 \le \Pi_3$ come from $g^{-1}(N_3) \in H_2$ submodules
 $g^{-1}(N_3) = (m_1, \dots, m_2)$, then $N_3 = (S(N) \in H_3)$ is a submodules
 $g^{-1}(N_3) = (m_1, \dots, m_2)$, then $N_3 = (S(N) \in H_3)$ is a submodules$

so $S(N) = Cm_s, ..., m_s > Proce m_rm_s \in N$ with L243 $\Im(u_1) = w_1 , ..., \Im(u_S) = w_S$. Next Take $f(N \cap f(M_1)) = N_1 \subseteq M_1$, submirchel, co its finitely generated N, =< q1, - qe> Then $n'_{1} = f(q_{1})$, $n'_{2} = f(q_{2})$. $\varepsilon = N \cap f(n_{1}) = \langle n'_{1}, \dots, n'_{2} \rangle$ <u>Ulaim</u>: $N = \langle n_1, ..., n_s, n'_1, ..., n'_e \rangle$ PP_{ick} nen, so $g(n) \in g(N) = \langle m, \dots, m_s \rangle$ That is $g(n) = q_1 m_1 + \dots + q_s m_s = q_1 g(n_1) + \dots + q_s g(n_s)$ = $g(q_1 n_1 + \dots + q_s n_s)$ $q_1 \dots q_s \in \mathbb{R}$ This means n-q,n,-..-asus Ekerg=Inf, so $n-q, n, -\cdots - a_s n_s \in N \cap f(\Pi_i) = \langle n'_i, \ldots, n'_\ell \rangle$ Include nE < n,,...ns, n'y, ... n'e> Note: (1) K is an R-module. Then: Ris a Northenian R-module if, and my if R is a Northenian ring. (2) Recall: Subrings of a Noethenian ring need not Le Noethenian (3) A finite direct sum of Northenian modules is Northenian (Hint: Induct on the number of cummonds & use Corollary 2) (4) M: Northerian R-module ⇒ SM is a Northerian S'R-mod. Smult closed set of R Propriitin: Let R be a Noetherian ring & M an R-module. Then It is Noetherian if a neg if It is finitely generated, ie I x1, ..., x2 E M st very x in N can be written (no necessarily uniquely) as $X = a_1 X_1 + \dots + a_k X_k$ for $a_1, \dots, a_k \in \mathbb{R}$.

Bud (=>) View II as a submitted of II sure Theorems.
(=) As II is finitely generated of II sure Theorems.
(=) As II is finitely generated of II = < x1, ..., x2> we
have
$$R \xrightarrow{L_1} II$$
 merghism of R -modules. By the
ait → aixi
unimenal projects of $R \oplus \dots \oplus R$ we have a unique
 $F: \bigoplus R \longrightarrow II R$ -Lénear map st $\bigoplus R$
(a, ..., A2) $\longmapsto \sum_{i=1}^{n} a_i x_i$
Turthemore, we get a sets of R -modules:
 V_i
 $0 \longrightarrow \ker F \longrightarrow \bigoplus R$ is also a Northerian
 R -module. Again by Coollary $z : Im F = II$ is Northerian II.
Examples $\bigoplus R = \inf R \longrightarrow II \longrightarrow O$
But R is Northerian , so $\bigoplus R$ is also a Northerian II.
Examples $\bigoplus R = iK$ a field , $H = K$ -rector space
II Northerian ($\bigoplus R$) dim $\lim_{i \in I} R \longrightarrow O$
 $(The R-submedule generated by $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ is NOT Fig.
 M will be a Northerian ring:
 $R = \frac{1}{2} (minutes (1 - Northerian Ring):
 $R = \frac{1}{2} (1 - \frac{1}{2})$ $M = 1$ (unded chain of intereds with IFillso)
 $\alpha_n = \frac{1}{2} F R = 1$ $F_1 = 0$ is an ideal in R.
 $\alpha_i \in \alpha_2 \in \alpha_3 \in \dots$ is articely interasing does of
So R is Not portherian.$$