L26 3 · By construction, I is a ring homomorphism. . By CRT, 9 is surjective • Ker $\Psi = M, \stackrel{n}{\cap} \dots \cap M_{\ell} \stackrel{n}{=} M, \stackrel{n}{\longrightarrow} \dots M_{\ell} \stackrel{n}{\subseteq} (M, \dots, M_{\ell}) \stackrel{n}{\subseteq} (M \stackrel{n}{=} 10)$ Remark $(M, \stackrel{n}{\to} parine'se coprime)$ holds for commutative rings since $M_1, \dots, M_k = M_1 \cap \cdots \cap M_k = M$ Indusin : l'is a ring ismorphism. • It remains to show that R/m is local tisjel. Let 9 4 R/min be a maximal ideal, so it's prime Thus of is the image of $B = TL'(q) \subseteq R \otimes B$ is a prime ideal intaining Mn • Problem 7 HW7: $M' \subseteq \mathcal{B}$ M maximual \mathcal{B} \mathcal{B} prime $\Rightarrow M = \mathcal{B}$. We conclude $M_j = \mathcal{B} \mathcal{B}$ so $\mathcal{G} = \mathcal{T}(M_j) = M_j M_j^n$ 52 The local case: Proposition, If R is Artimian and local then R is Noetherian Combining this Proposition with The Structure Theorem for Antinian nings & the fact that fraite products of Northerian rings on Northerian, we get. Corollary Artinian rings are Noetherran & have dimension O (Prop 1 (1)) Currense : Next Time ! Proof of Proposition: Let M be the unique maximal ideal of R& write k= P/m for the quotient. We know k is a field.

Note: For each job: the set
$$M_{M}^{j}$$
 is an R-module litic a
quotient of R-modules).
Now, $M \cdot M\delta \subseteq M^{j+1}$ so $M \cdot M_{M}^{j+1} = (0)$. This says
that $M\delta$ is in fact an R_{M} -module, it a k-rethrspace.
Main: R Antimian $\Longrightarrow \dim_{M} M_{M}^{j+1} \leq \infty$. In all job
We'll see the proof of this work time).
Assuming the daim holds, we will prove that R is Nottherian.
Rick an edual $\delta C of R$. We won't to show δC is finitely generated.
We will to construct subspaces of M_{M}^{j+1} , form each j .
The each $j \gg 0$, we consider the ideal $\delta C_{j} = \delta C \cap M_{0}^{j+1}$ of R
Neconstruction, F is R-linear
 $ker(F) = d_{j} \cap M^{j+1} = d \cap M^{j} \cap M^{j+1} = d_{j+1}$.
So $F : d_{j} = m^{j}$ M_{M}^{j+1} is injective a R-linear.
 M_{M}^{j+1} is injective a R-linear.
 M_{M}^{j+1} is injective a R-linear.
 M_{M}^{j+1} is a definite of a module in the initial scale interval in the initial scale interval in the initial is injective a resolution.
Now $M_{M}^{j} d_{j} = (0) = d M_{M}^{j+1}$ so F can be viewed as a k-linear.
 M_{M}^{j+1} is a d-subspace of M_{M}^{j+1} with M_{M}^{j+1} so F initial demensional initial is grave of M_{M}^{j+1} with M_{M}^{j+1} is a d-subspace of M_{M}^{j+1} with $M_{M}^{j+1} = d_{M}^{j+1}$.
Now $M_{M}^{j} d_{M}^{j} = d (M_{M}^{j+1}) = 0$ is injective as a k-linear.
 M_{M}^{j+1} is a d-subspace of M_{M}^{j+1} (ria F_{M}^{j} , thus, finite demensional index.
 $M_{M}^{j+1} = 0$, we have $A_{M} = (0)$, so we only need to look of $j \in 0, m^{m}$.

• Fin each
$$j = 0, \dots, n-1$$
 with $\mathcal{G}_{j} \neq (00)$, we let $j = \overline{a}_{1}^{(D)}, \dots, \overline{a}_{N}^{(D)} f$ be a tests
a k-basis $j > \mathcal{B}_{j}^{(A_{j+1})}$ with $a_{j}^{(D)}, \dots, a_{N}^{(D)} \in \mathcal{C}_{j}^{(D)}$. To simplify instation,
we use $w_{j} = 0$ if $\mathcal{B}_{j}^{(D)} = (0)$. We'll use these basis to build a generating set by $\mathcal{B}_{j}^{(D)}$.
Whet $\mathcal{B}_{j}^{(D)} = (0)$. We'll use these basis to build a generating set by $\mathcal{B}_{j}^{(D)}$.
B (so $\mathcal{R}_{j}^{(D)} \in \mathcal{C}_{j}^{(D)}$) a set $\mathcal{R}_{j}^{(D)}$ be the ideal generated
to show $\mathcal{A}_{j}^{(D)} = \mathcal{A}_{j}^{(D)}$ for all $j = 0, \dots, n$ where $\mathcal{A}_{j} := \mathcal{A} \cap \mathcal{M}^{d}$ for all j .
Taking $j = 0$ will give $\mathcal{R}_{j}^{(D)} = \mathcal{A}_{0} = \mathcal{A}_{0} = \mathcal{A} \cap \mathcal{R}_{j} = \mathcal{A}_{j}^{(D)}$
• We show $\mathcal{A}_{j}^{(D)} = \mathcal{A}_{j}^{(D)} = \mathcal{A}_{0}^{(D)} = \mathcal{A}_{0}^{(D)} = \mathcal{A} \cap \mathcal{R}_{j} = \mathcal{A}_{j}^{(D)}$
• We show $\mathcal{A}_{j}^{(D)} = \mathcal{A}_{j}^{(D)} = 0, \dots, be a near material fields for $j \neq 1$.
Notice these we have the pollowing inclusions of ideals of $\mathcal{R}_{j}^{(D)} = \mathcal{A} \cap \mathcal{M}_{j}^{(D)} = \mathcal{A} \cap \mathcal{M}_{j}^{(D)} = \mathcal{A} \cap \mathcal{M}_{j}^{(D)}$
• $\mathcal{B}_{j}^{(D)} = \mathcal{A} \cap \mathcal{M}_{j}^{(D)} = \mathcal{A}_{j}^{(D)} = \mathcal{A}_{j}^{(D)} = \mathcal{A}_{j}^{(D)}$
• $\mathcal{A}_{j}^{(D)} = \mathcal{A} \cap \mathcal{M}_{j}^{(D)} = \mathcal{A}_{j}^{(D)} = \mathcal{A}_{j}^{(D)}$
• $\mathcal{A}_{j}^{(D)} = \mathcal{A} \cap \mathcal{M}_{j}^{(D)} = \mathcal{A}_{j}^{(D)} =$$

As before
$$M \cdot \alpha_{j+1} = M \hat{\alpha}_{j/\tilde{\alpha}_{j+1}} = (0)$$
, so F is k-linear
Using this we get an inclusion of k-rector spaces $\hat{\alpha}_{j} \longrightarrow \alpha_{j}$
Notice that the basis $5\bar{a}_{1}^{(j)}, \dots, \bar{a}_{dj}^{(j)}$? If $\alpha_{j/\tilde{\alpha}_{j+1}}$ consists of
left -costs with representatives $a_{i}^{(j)}$ in $\tilde{\alpha}_{j}$, so this inclusion is an
equality! Thus $\tilde{\alpha}_{j+1} = \alpha_{j+1}$
In particular: $\alpha_{j} \subseteq \tilde{\alpha}_{j} + \alpha_{j+1} = \tilde{\alpha}_{j} + \tilde{\alpha}_{j+1} = \tilde{\alpha}_{j}$, as we
wanted to show.

Next Time : we'll prove the claim, by showing Lemma 2: If (R, M) is A Timan & beal, then dim $M^{j}_{MjH} < \infty$. H_{j} .