Lecture 27. Interview Rings & Paimany Decomposition
Lecture 27. Interview Rings & Paimany Decomposition
Last time: Discuss Attinian rings & local Anterview Properties
Stancture Theorem: IF R is a commutative Artinian ring, then:
(1) R has finitely many unst ideals
$$(M_1, ..., M_2)$$
 $(N = M, 0 ... 0 M_2)$
(2) R $\cong B_{M_1} \times ... \times B_{M_2}$ where $N = 100$ (and R_{M_1} (shittinian a local)
(2) R $\cong B_{M_1} \times ... \times B_{M_2}$ where $N = 100$ (and R_{M_1} (shittinian a local)
(3) Theorem: Antimican \Longrightarrow dimension 0 a Nottherman (4)
(4) R issing me part of the proof of this theorem(Lecture co)for local Antimican rings, lec
Lemma 2: If (R, M) is Artinian about the dim R_{M_1} (M_1 (M_1))
(1) Still view $k = R_{M_1} = (R_{M_1}^{(M_1)})/(M_{M_1}^{(M_1)})$ (By 2^{-4} Iso Thum for range)
(1) (1) Sub spaces (orce k) in $M_{M_1}^{(M_1)}$ (5) M_2^{-4} Iso Thum for range)
(1) (1) $R_{M_1}^{(M_1)}$ with $I \subseteq M_{M_1}^{(M_1)}$ (1) $(S_{M_1}^{(M_2)}) = (S_{M_1}^{(M_1)}) = (S_{M_1}^{(M$

Ideals in R/M jH annihi/alted by M/M jH
This cannet happen because
$$R_{M}$$
 jH is Artinica.
TODAY we will show the connected to (r). The proof is based in the notion of
"primary decomposition?" (next time)
§1. Northman + demo \Longrightarrow hatemian:
Recall a key general Lemma from last time:
Limmal: IF 3 a, ..., a stare primer consister of a commutative may R
then, so an 3 R_{1}^{k} , ..., R_{5}^{k} for each $k \ge 1$. However, $R_{1}^{k} \cap \dots \cap R_{5}^{k} = R_{1}^{k} \dots \circ R_{5}^{k}$
Theorem 1: Let R be a commutative Northelician rang R of but 0
(that is, every prime ideal of R is maximal). Thus, R (s Antimian .
• Key fact : R bothelican of dimension $0 \implies R$ has finitely many med
ideals , say M_{1}, \dots, M_{2}^{k} = flax Syee (R). - est of medicated of R.
• This will be shown by primary decomposition of (0) in R (later).
• It as northelic to prove Theorem : ble minic flat proof of the Standard lim.
• R is Northelian so if is a milpoint ideal
(SFF/Set $W = (x_{1}, \dots, x_{S}) \in a a source x_{1}^{m} = m_{1}^{m} \dots m_{2}^{m} = 0$ for $R_{1}^{m} = 0$ for $R_{1}^{m} = 0$ if $R = \frac{1}{2}m_{1}^{m}$.
• This will be shown by primary decomposition of (0) in R (later).
• It is weltherian so if is a milpoint ideal
(SFF/Set $W = (x_{1}, \dots, x_{S}) \in a a source x_{1}^{m} = \dots = x_{1}^{m} = 0$, $M_{1} \cap \dots \cap M_{2}^{m} = M_{1}^{m}$.
• The Unione Remainder Theorem applied to the set $3M_{1}^{m}, \dots, M_{2}^{m}$ of gains a subjective map
 $R = \frac{\Psi}{M_{1}} = \frac{W_{1}}{M_{1}} \times \dots \times \frac{W_{n}}{M_{2}}$
with $\ker \Psi = M_{1}^{m} \cap \dots \cap M_{2}^{m} = M_{1}^{m} \dots M_{2}^{m} \in (m_{1}^{m} \dots m_{2}^{m}) = 0$

So
$$\Psi$$
 is a ring ismorphism.
To finish the proof is enough to show the following 2 claims:
(laim): Finite products of Antinian rings at Antinian rings.
3F/ Ideals of $R_1 \times \cdots \times R_q$ and of the form $\Re_1 \times \cdots \times \Re_q$ where each \Re_i
is an ideal of R_i (see HW9)
(laim 2: Each $R_j := B_{M_j}$'s is an Antinian ring.
3F/ By construction, each R_j is a Northerian ring, of dimension 0 e local, with
we get must ideal $\overline{M}_j := \overline{M}_{M_j}^{(n)}$. Note: $\overline{M}_j^{(n)} = 0$.
Now, the Northerian condition on R , says $M_j^{(1)}$ is for as an R -module for
each $i=1,\cdots,n$. In particular $\prod_{i=1}^{n} \overline{M}_{M_i}^{(i)}$ is a G R -module, and
these a fractily generated sector space over $k_i: \overline{R}_{M_j} \cong \overline{N}_j^{(i)}$ ($\overline{a} \cdot \overline{x} = a \cdot \overline{x} + \overline{n}$
 $a \in R = x \in \Pi_j$)
(Inclusion: doing $\prod_{i=1}^{n} G = 0$. For each $i=1,\ldots,n$.
This enditing quanantees that R_j is hiterian. Indeed, for any descending
chain $\Re_1 \supseteq \Re_2 \supseteq \cdots$ of ideals of $R_j^{(i)}$ be use the same techniques
used to prove (Ratinian + Local \Longrightarrow Northerian)
For each $q = 0, \ldots, n$ we consider the chain
 $\Re_1 \cap \overline{M}_j^{(2)} \supseteq \Re_2 \cap \overline{M}_j^{(3)} \supseteq \cdots$
This endition of the $\Re_{i+1} \cap \overline{M}_j^{(3)} \supseteq \cdots$
Note that for $q = n$ this chain is (0) $\ge (0) \ge \cdots$.
For each i , we take $\Re_{i+1} \cap \overline{M}_j^{(2)} \Longrightarrow \Re_i^{(n)} (\overline{M}_i^{(2)} \cdots \Re_i^{(n)} \widehat{M}_i^{(2)})$
 $\Psi_{i,2}$ is R_i -linear.
- Ker $(\Psi_{i,2}) = \Re_{i,1} \cap \overline{M}_j^{(2)} \cap \Re_i^{(n)} \widehat{N}_i^{(2)+1} = \Re_{i,1} \cap \overline{M}_i^{(2)+1}$.

This induces an injective R-linear map
$$\Psi_{i,\xi} : \frac{Q_{i+1} \cap \overline{m}_{j}^{k}}{Q_{i+1} \cap \overline{m}_{j}^{k+1}} \xrightarrow{Q_{i-1} \cap \overline{m}_{j}^{k+1}} \frac{Q_{i-1} \cap \overline{m}_{j}^{k+1}}{Q_{i-1} \cap \overline{m}_{j}^{k+1}}$$

Since the map is $k \in \mathbb{R}_{/\overline{m}_{j}}$. Where, we use a discunding chain of k-victor spaces
(#) $\frac{Q_{i} \cap \overline{m}_{j}^{k}}{Q_{i} \cap \overline{m}_{j}^{k+1}} \xrightarrow{Q_{i-1}} \frac{Q_{i-1} \cap \overline{m}_{j}^{k}}{Q_{i} \cap \overline{m}_{j}^{k+1}} = \frac{Q_{i-1} \cap \overline{m}_{j}^{k}}{Q_{i} \cap \overline{m}_{j}^{k+1}}$
Since the map is $k \in \mathbb{R}_{/\overline{m}_{j}}$. Uncer, we get a discunding chain of k-victor spaces
(#) $\frac{Q_{i} \cap \overline{m}_{j}^{k}}{Q_{i} \cap \overline{m}_{j}^{k+1}} \xrightarrow{Q_{i-1}} \frac{Q_{i-1} \cap \overline{m}_{j}^{k}}{Q_{i-1} \cap \overline{m}_{j}^{k+1}} = \frac{Q_{i-1} \cap \overline{m}_{j}^{k}}{Q_{i-1} \cap \overline{m}_{j}^{k+1}}$
This free the chain (#) to stabilize.
Since we have finitely many chains (0 esgen-1), we may assume that they
all stabilize at the same spit (seag, L^{4k}). This means:
(**) $\mathcal{A}_{i} \cap \overline{m}_{i}^{k} \subset \mathcal{A}_{s+1} \cap \overline{m}_{j}^{k} + \mathcal{A}_{s} \cap \overline{m}_{i}^{s+1}$ for all sold a all g=0-----
. For $g = k$, we know $\mathcal{A}_{k} \cap \overline{m}_{j}^{k-1} = \mathcal{A}_{s+1} \cap \overline{m}_{j}^{k-1} + O$
so $\mathcal{A}_{k} \cap \overline{m}_{i}^{k-1} = \mathcal{A}_{k+1} \cap \overline{m}_{i}^{k-1} = \cdots$.
. For $g = n-1$, (**) yields: $\mathcal{A}_{s} \cap \overline{m}_{i}^{n-2} = \mathcal{A}_{s+1} \cap \overline{m}_{j}^{k-2} + \mathcal{A}_{s} \cap \overline{m}_{j}^{k-1}$
So $\mathcal{A}_{s} \cap \overline{m}_{i}^{n-2} = \mathcal{A}_{s+1} \cap \overline{m}_{j}^{n-2} + \mathcal{A}_{s+1} \cap \overline{m}_{j}^{k-1} = \cdots$.
. For $g = n-2$, (**) yields: $\mathcal{A}_{s} \cap \overline{m}_{i}^{n-2} = \mathcal{A}_{s+1} \cap \overline{m}_{j}^{k-1} + O$
so $\mathcal{A}_{s} \cap \overline{m}_{i}^{n-2} = \mathcal{A}_{s+1} \cap \overline{m}_{j}^{n-2} = \mathcal{A}_{s+1} \cap \overline{m}_{j}^{k-1} + O$
. Include: $\mathcal{A}_{s} \cap \overline{m}_{s}^{k-1} = \mathcal{A}_{s+1} \cap \overline{m}_{s}^{k-1} = \cdots$.
. In faction of this using (by answer induction on $g \in 30, \dots, n^{k-1}$), we inducted in stabilizes.
So $\mathcal{A}_{s} \cap \overline{m}_{s}^{k-1} = \mathcal{A}_{s+1} \cap \overline{m}_{s}^{k-1} = \cdots$. As our surplued chain stabilizes.
So $\mathcal{A}_{s} \cap \overline{m}_{s}^{k-1} = \mathcal{A}_{s+1} \cap \overline{m}_{s}^{k-1} = \cdots$.
. In particular, for $g = 0$, this gives $\mathcal{A}_{k} = \mathcal{A}_{s+1} = \cdots$. As our surplued chain stabilizes.
So $\mathcal{A}_{s} \cap \overline{m}_{s}^{k-1} = \mathcal{A$

· Central Tool in Algebraic Germiting & the study of Dedekind Imains.

Supration An ideal
$$q \subseteq R$$
 is primary if for any $q, s \in R$ we have
"ab $\in q$ a $b \notin q \Longrightarrow$ a " $\in q$ for some $n \ge 1$ ".
Observation: Equivalent, every que divisor of R_{q} is a subprised element
(Hinor): Equivalent, every que divisor of R_{q} is a subprised element
(Hinor): Equivalent, every que divisor of R_{q} is a subprised element
(Hinor): $q \subseteq R$ primary $\Rightarrow r(q)$ is prime.
Bt/ $a, b \in B = r(q) \Rightarrow (ab)^{n} = a^{n}b^{n} \in q$ for some $n \ge 1$.
 \Rightarrow either $b^{n} \in q$ or $(a^{n})^{m} \in q$ for some $n \ge 1$.
 \Rightarrow either $b^{n} \in q$ or $(a^{n})^{m} \in q$ for some $n \ge 1$.
 \Rightarrow either $b^{n} \in q$ or $(a^{n})^{m} \in q$ for some $n \ge 1$.
 \Rightarrow either $b^{n} \in q$ or $(a^{n})^{m} \in q$ for some $n \ge 1$.
 \Rightarrow either $b^{n} \in q$ or $(a^{n})^{m} \in q$ for some $n \ge 1$.
 \Rightarrow either $b^{n} \in q$ or $(a^{n})^{m} \in q$ for some $n \ge 1$.
 \Rightarrow either $b^{n} \in q$ or $(a^{n})^{m} \in q$ for some $n \ge 1$.
 \Rightarrow either $b^{n} \in q$ or $(a^{n})^{m} \in q$ for some $n \ge 1$.
 \Rightarrow either $b^{n} \in q$ or $(a^{n})^{m} \in q$ for some $n \ge 1$.
 \Rightarrow either $b^{n} \in q$ or $(a^{n})^{m} \in q$ for some $n \ge 1$.
 \Rightarrow either $b^{n} \in q$ or $(a^{n})^{m} \in q$ for some $n \ge 1$.
 \Rightarrow either $b^{n} \in q$ or $(a^{n})^{m} \in q$ for some $n \ge 1$.
 \Rightarrow either $b^{n} \in q$ or $(a^{n})^{m} \in q$ for some $n \ge 1$.
 \Rightarrow either $b^{n} \in q$ or $(a^{n})^{m} \in q$ for some $n \ge 1$.
 \Rightarrow either $b^{n} \in q$ or $(a^{n})^{m} \in q$ for $(a^{n})^{m} \in q$ for $(a^{n})^{m} \in q$.
 $a^{n} \in (x^{n})^{m} = (a^{n})^{m} =$