Lecture 28: Primary Decomprition II
$F_{\text {ix }} R=$ commutatire ring.
Recall. q primay ideal of $f_{x y} \in q$ \&y $\notin q \Rightarrow x^{n} \in q$ fr same x
Lemmal: q pimary $\Rightarrow s(q)$ prime
Obs: (1) q primary $\nRightarrow q$ is a powerit a prime
(2) P prine $\nRightarrow 8^{n}$ is primsiy
(3) $r(q)$ maximal $\Rightarrow q$ is primary
§1. Inuducible delals \& Primary decumprotions:
Def: An ideal $a \subseteq R$ is ineducible if $a=b \cap C$ with $b, C \subseteq R$ ideals, then $a=b \pi a=C$.
-Terminology cones pum Topplopg: if $R=\mathbb{C}\left[x_{1}, \ldots x_{n}\right]$, then $a, b \& C$ diprae 3 closed sets in \mathbb{C}^{u} (solutions to prleguminids in each ideal), namely $V(\&)$, $V(f)+V(e)$. Howoser:
$a=b \cap C$ translates to $V(a)=V(b) U V(C)$ So we candicampse $V(\alpha)$. if x is NOT ineducible.
The next menlt says we hase "Primary Decompsitims for Notherian wips."
Therem 1: Assume R is Neetherian. Then:
(i) Ereny idual in R is a fimite intersectem of imeducetle ideals.
(ic) Ineducible \Rightarrow Primary
Pwof: (i) We ayne by antradidim. Set:
$\Sigma:=\{x \subseteq R$ ideal: x is not a pimite intersedtion Mimed.ideab\}

- Since $\Sigma \neq \varnothing$, then Σ has a maximal element (R Nerth), say $x \in \Sigma$ Since a is not imeducible (othurise $a \notin \Sigma$), then $a=f \cap C$ in a pain fiduals $b l$ with $a \not f b \& \delta c c$

Now $f, C \notin \sum$ by maximality of $d<$, so.

$$
\left\{\begin{array}{l}
f=b_{1} \cap \ldots \cap f_{k} \\
c=c_{1} \cap \ldots \cap c_{l}
\end{array}\right.
$$

$\Rightarrow a=b_{1} \cap \cdots \cap b_{k} \cap C_{1} \ldots \cap C_{e} \notin \sum$ cunts ! Cuclude: $\Sigma=\varnothing$.
(ii) Fix $\& \notin R$ ineducible ideal.

Wrking with $\widetilde{R}=R / a$, we may asseme (0) is an ineducible ideal
Let $x y \in(0)$ ie sell Noethenan $x y=0$ \& $y \neq 0$ We want to prose $x^{n}=0$ fre sme $u>0$.

$$
y \notin(0)
$$

Cmidu the choin of ideab:

$$
\begin{gathered}
A_{n n}(x) \subseteq A_{m n}\left(x^{2}\right) \subseteq \cdots \leq A_{m n}\left(x^{i}\right) \subseteq \cdots \\
{\left[A_{n n}(z)=\{r \in R \mid r z=0\} \underset{\text { ideal }}{C} R\right] .}
\end{gathered}
$$

Since R is Noetterian, $\exists n>0$ st $A_{\text {mn }}\left(x^{n}\right)=\operatorname{Amn}\left(x^{n+1}\right)=\cdots \cdots$
Uaim: $(0)=\left(x^{n}\right) \cap(y)$.

$$
\left.\begin{array}{c}
\text { Pf/z) } a \in(y) \Rightarrow a x=0 \quad(\sin a x y=0) \\
a \in\left(x^{n}\right) \Rightarrow a=b x^{n}
\end{array}\right\} \Rightarrow b x^{n+1}=0
$$

But $b x^{n+1}=0 \Rightarrow b \in \operatorname{Arn}\left(x^{n+1}\right)=\operatorname{Amn}\left(x^{n}\right)$ so $b x^{n}=0$.
So $a=b x^{n}=0$.
Since (0) is indercible and $(y) \neq(0)$, we anclude $\left(x^{n}\right)=(0)$, ie $x^{n}=0$ as desined
\& 2 Applicatin:
Fix R Netherian acommutatire. Let $\alpha \subset R$ be an ideal.

Let $\nabla_{i}=c\left(q_{i}\right)$ be the coresprading prime ideals.

Lemma 2: If $8 \subset R$ is a prime ideal, minimal axing the set of prime ideals containing Q, then $B=P_{i}$ frame $i=1, \ldots l$
Pf/ By Theorem z of Prime Avoidance (Lecture 20), we have $q_{1} \cap \ldots \cap q_{l} \subseteq P_{\text {prime }} \Rightarrow q_{i} \subseteq 8$ frame i.
Hence $\theta_{i}=r\left(q_{i}\right) \leq r(8)=\theta^{8}$, but

$$
a \subseteq 8_{i} \subseteq 8 \subseteq P_{\text {lime }} \quad \& \gamma_{\text {minimal }} \Rightarrow 8_{i}=8
$$

Def: The minimal primes of R are the prese ideals of R, minimal with resect to inclisim.
Corollary t: These an sly finitely many miminnal primes over any given ideal O of a Noetherian ring $R .(\longleftrightarrow$ mim pines in $R / Q)$ Corollary 2: If R is N eutherian of dimension 0 , the minimal primes sun(0) an maximal ideas, so R has finitely many maximal ichals. (This was the key Fact assumed To pore "Notherian+din $0 \Rightarrow$ Antivian") §3 Reduced Primary Decompsitims - Uniqueness features:
. We can simplify primary decompsiters by avoiding redundancies of q_{i} 's \& ensuring primary compments have different primes asssiated to them (il their radicals!)
Definition: A primary decomposition $X=q_{1} \cap \ldots \cap q_{\ell}$ is reduced if
(1) $p_{i}=\sqrt{q_{i}}$ an all distinct
\& (2) $q_{i} \not \nsupseteq \bigcap_{j \neq i} q_{j}$ fr $j=1, \ldots, l \quad$ (ie no q_{i} is rudemdont) - After unoning redeundant umpments (my at a time), we can achiene(1) thanks To the following lemma.

Lemma: If $\tilde{q}_{1}, \ldots, \tilde{q}_{n}$ are primary ideals with $r\left(\tilde{q}_{i}\right)=p$ fo $i=1, \ldots, n$, then $q=\bigcap_{i=1}^{n} \tilde{q}_{i}$ is alow primary $\& r(q)=P$
Proof: $\cdot r(q)_{[\text {cuncisi }}=\bigcap_{i=1}^{n} r\left(\tilde{q}_{i}\right)=\bigcap_{i=1}^{n} p=8$.

- We prove that q is primary using the definition.

Pick $x y \in q$ with $y \notin q$. Then $\exists j$ with $y \notin \tilde{q}_{j}$
Sima q_{j} is primary $\exists x \geqslant 1$ with $x^{n} \in q_{j}$ ie $x \in r\left(q_{j}\right)=\beta=r(q)$ $\Rightarrow \exists N \geqslant 1$ with $x^{N} \in q$., as we wanted.
Obs: If $x=q_{1} \cap \ldots n q_{e}$ is a reduces primary decamp., the q_{i} 's are called primacy comprents of A. They are not unique.
Example: $\alpha=\left(x^{2}, x y\right) \subset R:=\mathbb{K}[x, y] \quad$ (monomial ideal)

- $8_{1}=(x)$ \& $8_{2}=(x, y)$ en prince ideals of R
- $\alpha=\gamma_{1} \cap \nabla_{2}^{2}=\gamma_{1} \cap\left(x^{2}, y\right)$ are 2 educed primary decamp
- P_{1} alimony: $f g \in(x)$ \& $g \notin(x) \Rightarrow x \mid f$, so $f \in(x) .(n=1)$
- γ_{2}^{2} because $r\left(\gamma_{2}^{2}\right)=\gamma_{2}$ is maximal.
- $\left(x^{2}, y\right) \longrightarrow r\left(x^{2}, y\right)=\theta_{2}$
- $8_{1 / a}=\sqrt{\gamma_{1}} / \alpha$ is a minimal prime of $R / a \quad$ (8 , is a minimal pine on $\left.x\right)$

Def: Ass $(x)=\left\{\sqrt{q_{1}}, \ldots, \sqrt{q_{l}}\right\}=$ Associated primes.
Key results. ASS (x) dorsn'tdyend m the choice of reduced primacy de amp

- Any P prime containing \mathscr{A} where $\frac{B}{G}$ is a minimal imine of R / a must feature in $\operatorname{Ass}(\pi)$. Call thin $\operatorname{Min}(\pi)$
- Uniqueness of q_{i} ny applies To q_{i} 's with $r\left(q_{i}\right) \in \operatorname{Mm}(\alpha)$

Thurum 2: Assume that $\mathscr{R}=q_{1} \cap \ldots \cap q_{e}$ is a reduced piensary decrup with $\operatorname{Min}(x)=\left\{\sqrt{q}_{1}, \ldots, \sqrt{q_{s}}\right\}$. Then q_{1}, \ldots, q_{s} are uniquely determined by \mathcal{O}. Moe explicitly: $q_{i}=j_{i}^{-1}\left(j_{i}(\theta) R_{p_{i}}\right)$ fr $i=1 \ldots$. s where $p_{i}=\sqrt{q_{i}} \& j_{i}: R \not \longrightarrow R p_{i}$

Proof: We px $i \in 3_{1}, \ldots, k$ and write $P=P_{i}, q=q_{i} \& j=j_{i}: R \rightarrow R>p$ $S=(R-8)$
Difine $b=$ ideal in R_{p} generated by $j(x)$

$$
=s^{-1} \alpha=j(\pi) R_{p}
$$

GON: Show $q=j^{-1}(b)$
We prose this by a series of claims:
Claim 1: $S^{-1} x=\bigcap_{k=1}^{\ell} S^{-1}\left(q_{k}\right)$
If/ A rage by induction $n l$ using that $f \cap l=2$ this works for any pain of submodules of an ambient module M (Take $\left.M=R, N_{1}=q_{1}\right)$ More precisely.
(k) If $N_{1}, N_{2} \subseteq M$ are R-sumuidules, then $\left(S^{-1} N_{1}\right) \cap\left(S^{-1} N_{2}\right)=S^{-1}\left(N_{1} \cap N_{2}\right)$

- Indeed, (2) is twee since $N, \cap N_{2} \subseteq N_{i} \Rightarrow S^{-1}\left(N_{1} \cap N_{2}\right) \subseteq S^{-1}\left(N_{i}\right)$ are $S^{-1} R$ summardules of $S^{-1} M$.
- For (c) Pick $\frac{m}{s} \in S^{-1} N_{1} \cap S^{-1} N_{2}$, so $\exists m_{1} \in N_{1}, m_{2} \in N_{2}$ \& $s_{1}, s_{2} \in S$ with $\frac{m}{s}=\frac{m_{1}}{s_{1}} \& \quad \frac{m}{s}=\frac{m_{2}}{s_{2}}$ in $S^{-1} \Pi$
Then: $\exists t \in S$ with $t\left(s_{2} \cdot m_{1}-s_{1} \cdot m_{2}\right)=0$

$$
N_{1} \geqslant\left(t s_{2}\right) \cdot m_{1}=\left(t s_{1}\right) \cdot m_{2} \in N_{2} \text {, so it'sim } N_{1} \cap_{2}
$$

Now $\frac{m}{s}=\frac{m_{1}}{s_{1}}=\frac{t s_{2} m_{1}}{t s_{2} s_{1}} \in S^{-1}\left(N_{1} \cap N_{2}\right)$ as we wanted.

Clam 2: $s^{-1} q_{k}=S^{-1} R$ if $k \neq i \quad$ so $j^{-1}\left(s^{-1} q_{k}\right)=R$ if $k \neq i$
SF/ It suffices to show $q_{k} \cap S \neq \varnothing$. If this were not the case, then $q_{k} \subseteq P$, then $p_{k}=r\left(q_{k}\right) \subseteq r(p)=8$, so

$$
\alpha \subseteq q_{k} \subseteq r\left(q_{k}\right)=\gamma_{k} \subseteq P \quad \& \quad \gamma^{(\operatorname{Min}(\alpha)} \text { freeing } P_{k}=P
$$

This cannot haffen because ore primary deermpsitim was reduced!
Claim 3: $j^{-1}\left(s^{-1} q\right)=q$
If/ Charley $q \subseteq j^{-1}\left(s^{-1} q\right)$ Note $: q \subseteq r(q)=p$ so $q \cap S=\phi$
Cuntessely, if $x \in j^{-1}\left(S^{-1} q\right)$, then $x=\frac{x}{1} \in S^{-1} q$, so

$$
\begin{aligned}
\frac{x}{1} & =\sum_{m=1}^{N} \frac{a_{m}}{b_{m}} \frac{x_{m}}{1} \quad \text { with } \quad \frac{a_{m}}{b_{m}} \in R_{p}, x_{m} \in q . \\
& =\sum_{m=1}^{N} a_{m} \frac{b}{b_{m}} x_{m} \quad \text { with } b=\pi b_{m} \notin p
\end{aligned}
$$

Call $a=\sum_{m=1}^{N} a_{m} \frac{b}{b_{m}} x_{m} \in q$, to see $\frac{x}{1}=\frac{a}{b}$ with $a \in q+b \notin 8$
Now: $\exists s \notin 8$ with $s(b x-1 \cdot a)=s(b x-a)=0 \mathrm{~m} R$

$$
(s b) x=s a \in q \text {. }
$$

By definition, if $x \notin q$, then $\exists n>0$ with $(s b)^{n} \in q$, ie $s b \in P$ but this can't happen because $s \notin P$ \& b $\notin P$.
Conclude $x \in q$. so $s^{-1}\left(s^{-1} q\right) \subseteq q$.
Obscuration: This uniquess will be easy to prose for RIDs, since each primary ideal $q \neq(0)$ with be of the from m^{n} frs me $n \geqslant 1$ \& with m a maximal ideal.

