Now
$$f, C \notin Z$$
 by maximulity of \mathcal{X} , so
 $\begin{cases} f = h, \cap \cdots \cap h_{\mathcal{X}} & \text{with } h_{i}, C_{j} & \text{indexible} \\ C = C_{i} \cap \cdots \cap h_{\mathcal{X}} \cap C_{i} \cdots \cap C_{\ell} & \notin Z & \text{(and } i & (and de): Z = \emptyset. \end{cases}$
(2) Fix $\mathcal{X} \subsetneq \mathbb{R}$ inducible ideal.
Working with $\tilde{\mathbb{R}} = \frac{1}{2}\mathcal{A}$, we may assume (*) is an inducible ideal
Let $x \in G$ is a given and assume (*) is an inducible ideal
Let $x \in G$ is a given by event to prove $x^{2} = 0$ for some $x = 0$ for some $x = 0$ for some $x = 0$ for $y \notin (0)$
(and the chain of ideals:
And $(x) \subseteq And (x^{2}) \subseteq \cdots \subseteq And (x^{2}) \subseteq \cdots$.
[And $(z) = \frac{1}{2}$ reference if $r_{2} = 0$ for C_{i} R].
Since R is Nuttherian , $\exists u > 0$ st $And (x^{n}) = And (x^{n+1}) = \cdots$.
(Laim: $(0) = (x^{n}) \cap [\frac{1}{2})$.
Stiff $2 = \alpha \in (x^{n}) \implies \alpha = 0$ (since $x = 0$) for $x^{n} = 0$.
So $\alpha = bx^{n} = 0$.
Since (0) is inducible and $(q) \neq (0)$, we include $(x^{n}) = \log$, is $x^{n} = 0$ as derived
 $\frac{q = Application}{1}$:
Fix R Northerian a commutative. Let $\mathcal{A} \subseteq \mathbb{R}$ be an ideal
Write $\mathcal{A} = \mathfrak{A}$, $\bigcap \mathfrak{A} = \mathfrak{A}$ (a primary decomposition $\frac{1}{2}\mathcal{A}$)
 $\operatorname{Induceible}(=) \operatorname{Induc}(x)$ primary.
Let $\mathcal{B}_{i} = C(q_{i})$ be the conseptiment of primary decomposition $\frac{1}{2}\mathcal{A}$.

Lemma 2: If
$$B \neq R$$
 is a prime ideal, minimal assung the ref
of prime ideals intaining R , then $B = B_i$ for some $i = 1, \dots, l$
 $BF/By Theorem z of Prime Avoidance (Lecture zo), we
have $q_1 \cap \cdots \cap q_l \in S \implies q_i \in S$ for some i .
Hence $B_i = r(q_i) = r(B) = B$, but
 $R \in B_i \subseteq B = B$ minimal = $B_i = B$. \square
Frime$

Def. The minimal primes of R are the preme ideals of R, minimal with nefect to indusion.

Corollary 1: There are may finitely many minimal grimes over any given ideal OC of a Noetherian ring R (in primes MR) Corollony Z: IF Ris Northerian of Limensin O, the minimal primes sulo) an maximal ideals, so R has finitely many maximal ideals. (This was the key Fact assumed to prove "Noltherian + dim o => Artinian") \$3 Reduced Primary Decompositions - Uniqueness features; . We can simplify primary decompositions by avoiding redundancies of 92's & ensuring primary conjournes have different primes associated to them (it their radicals!) Depinition. A primary decomposition &= 9, n-- nge is reduced if (1) $\mathcal{B}_{i} = \overline{q}_{i}$ an all distinct (2) $q_{i} \neq \bigcap_{j \neq i} q_{j}$ for j = 1, ..., l(ie no qi is redemdant) .After removing redendant imprents (mat a time), we can achier (1) thanks to the following lemma.

.

Theorem 2: Assume that
$$dt = q_1 \cap \cdots \cap q_k$$
 is a netword primary dramp
with Thin $(dt) = 3 \mid \overline{q_1}, ..., \overline{q_3} \}$. Then $q_1, ..., q_s$ are uniquely
ditermined by dt . Hore explicitly: $q_i = j_i^{-1} \mid j_i(dt) R_{g_i}$)
for $i=1,..., s$ where $B_i = \overline{Iq_i} \in j_i: R \longrightarrow R_{g_i}$.
 g_{neof} . We for $i \in 3,..., k$ and write $B = B_i, q = q_i$ $g_i = q_i = g_i$
 $S = (R - B)$
Define $b = ideal in R_g$ submatched by $j(dt)$
 $= S^{-1}dt = j(dt) R_g$
 $Gont: Show q = j_i^{-1}(b)$
We prove this by a series of chaims:
 $(larmi): S^{-1}dt = \bigcap_{i=1}^{k} S^{-1}(q_i)$
 $gf/A regue by induction on a using that for $l = 2$, this works for any
hain of submodules of an ambient worker H . (Take $H = R, M = q_i$) Hore precisely.
 $N_{N=} = q_2$
 $M_i = (S^{-1}M - S^{-1}M - S^{-1}M) = S^{-1}(N_i) M_2$
 $s_{i,s_2} \in S$ with $m_R = S^{-1}M - S^{-1}M_2$, $s_2 \equiv M_i \in N$, $m_2 \in N_2 \in S^{-1}(N_i)$
 $M_i = (t_{S_2}, m_i - S_1, m_2) = 0$
 $N_i = (t_{S_2}, m_i - S_1, m_2) = 0$
 $N_i = (t_{S_2}, m_i - S_1, m_2)$ as we would define M_i $M_i = M_i$ m_i M_i M_i M_i M_i M_i M_i M_i $M_i = M_i$ M_i $M_i = (t_{S_2}, m_i - s_1, m_2) = 0$
 $N_i = (t_{S_2}, m_i - s_1, m_2) = 0$
 $N_i = (t_{S_2}, m_i - s_1, m_2)$ as we would define M_i $M_i$$