Lecture 29: PIDs, Paimary Decompritines for PIDs
Last Eime: Redeced Primary Decompsitimes fr ideabs of Noetherion suigs (commutatione)
Idfinition: A primary decompsoition $x=q, \cap \ldots \cap q_{e}$ is reduced if
(1) $q_{i} \not \not \not \bigcap_{j \neq i} q_{j}$ fr $j=1, \ldots, l$ (ie no q_{i} is udemdant)
$\&$
(2) $\gamma_{i}=\bar{q}_{i}$ an all distinct

Def: Ass $\left.(x)=3 \sqrt{q_{1}}, \ldots, \sqrt{q_{l}}\right\}$ = Associated primes of x
Key results. Ass(x) dossn't dy pend on the droice of uduced primany de comp (we didn't sine a proof of this!)

- Any P prime cmtaining x where $\frac{3}{a}$ is a minimal juine of R / a mest featere in $\operatorname{Ass}(\alpha)$. Call thim $\operatorname{Min}(\pi)$
- Uniquenes $1 q_{i}$ mly applies To q_{i}^{\prime} s with $\Gamma\left(q_{i}\right) \in \operatorname{Mm}(\alpha)$

$$
\left(q_{i}=j_{i}^{-1}(j i(x)) \quad j i: R \longrightarrow R_{g_{i}} \quad S_{i}=r\left(q_{i}\right)\right)
$$

31. Primary Decompsitims fr PIDs:

Recall A commutatere ring R is a principal idial domain (PID) if it is a domain and escry ideal of R is of the $\operatorname{trom}(a)$ fo $a \in R$.
Examples (1) $\mathbb{Z}\left(I \subseteq \mathbb{Z} \& I \neq(0)\right.$, then $I=\left(\min \left(I \cap \mathbb{Z}_{>0}\right)\right)$
(2) $\mathbb{K}[x] \quad(I \subseteq \mathbb{Z}, I \neq(0)$, then $I=(f)$ where $f \in I$ has niminual degree.

- (1) \& (2) are Eudidean domains a all Euclidian Dmains au PIDs.

Obsenvatim: PID \Rightarrow Nertherian (Ideab are finitlly geunatid!) As a consequence, we hase primary de compsitions fo PIDs.

Q: What do thy look like?

Lemma 1: Fix a PID R \& a non-guo prime ideal P of R. Them, 8 is a maximal ideal of R.
Prof: Write $8=(a)$ with $a \neq 0 \quad(R$ is a PID \& 8 is on ideal) Assume $P=(a) \subset I=(b) \subseteq R: W e$ need to show $I=R$.

- Since $a \in(b)$ we can write $a=b c$ for $c \in R$

If $I \neq P$ then $b \notin P$. The prime condition gives $c \in P$, so $c=a x$.
Then $a=b c=b a x$, ie $a(b x-1)=0$
Since $a \neq 0$ \& R is a domain, we conclude $b x-1=0$, so b is a unit \& thees $I=R$.
Cowllany If q is a nomero primary ideal in a PID, then $r(q)$ is a maximal ideal.

Q: What more can we say about primacy comprents?
Lemma 2 If R is a PID $\& q \neq(0)$ is a primary ideal, then $q=m^{n}$ fo some maximal ideal $(m=r(q))$

Prof: We know $q \subseteq r(q)=m$
Since R is a $P I D$, we have $q=(q) \& M=(p)$ with $p^{n} \in q$ freemen $\geqslant 1$.
Pick smallest such n, ie $p^{n} \in q$ but $p^{n-1} \notin q$.

- Since $q \in(p)$, we have $q=p x$ forme x
- Since $p^{n} \in(q)$ we has $p^{n}=q y$ forme $y \in R \cdot m$ (otheurik, we

$$
\Rightarrow p^{n}=q y=(p x) y \text { gives } p\left(p^{n-1}-x y\right)=0
$$ get $\left.p^{n-1} \in(q)\right)$

Since R is a domain, $P^{n-1}=x y=y x \in m^{n-1}$

- But m^{n-1} is a primary ideal $\left(r\left(m^{n-1}\right)=m\right.$ is maximal $)$, so $y x \in m^{n-1}$ \& $y \notin m=r\left(m^{n-1}\right)$ frees $x \in X^{n-1}$ (difinitimo/primany ideal)
$\Rightarrow x \in\left(p^{n-1}\right)$ \& we can write $x=p^{n-1} z$ is sme $z \in R$.
Conclude: $\quad f=p x=p\left(p^{n-1} z\right)=p^{n} z$

$$
\Rightarrow q=(q) \subseteq\left(p^{n}\right)=m^{n} \subseteq(q) \quad \text { giring } q=m^{n}
$$

This statement has a ancial consequence:
Thorem1 (Slimary Decomproitions for PIDs)
Fix a namper profer idial x of a PID R. Thun, there exists primary ideals q_{1}, \ldots, q_{l} of R satisfying:
(1) $r=q_{1} \cap \ldots \cap q_{l} \quad$ ("Primary decompsitim $f(x$ ")
(2) $q_{i} \not \neq \bigcap_{j \neq i} q_{j} \quad($ no redundancies in (1))
(3) $\left\{8_{i}=r\left(q_{i}\right)\right\}_{1 \leq i \leq \ell}$ ane distinct un-yso pieme ideals $\left.\& R\right\}_{\text {dimamp. }}^{\text {dimary }}$

Futhermure, $M_{\mathrm{in}}(\theta)=\operatorname{Ass}(\theta)$, \& $q_{1}, \ldots q_{l}$ are unique. \rightarrow all unneso prime ideats an maximal (so $\operatorname{Ass}(x) \subseteq \operatorname{Min}(x))$
PF/ Use existince of redueed primary decomp fos Notherian iinp, (Lectere 28, Thm 1 a lamme1). Fo the uniqueness, we that $m_{i}: r\left(q_{i}\right)$ is maximal by Lemmal \& $q_{i}=m_{i}{ }^{n}$ by Lemma2. In particulor. any 2 uduced pimary decampiritims will hase the from:

$$
a=m_{1}^{n_{1}} \cap \ldots \cap m_{l}^{n_{l}}=m_{1}^{s_{1}} \cap \ldots \cap m_{l}^{s_{l}}
$$

The Assoriatid primes are unique because thay are minimal (Lecturzz, Lemmar) - To finish, we han To show $n_{i}=s_{i}$ in each si.

Claim $n_{i} \leq \max \left\{n \geqslant 1 \quad a \leq m_{i}^{n}\right\}$ (This will be ancial to show Bf/ a isprotes \& $m_{i} \in M_{i m}(\pi)$ so $a \subseteq m_{i}$ that the ni's an urifue) We want to show $\Lambda=3 n \geqslant 1: \alpha \subseteq m_{i}{ }^{n} r$ is fimite. If not, this will free $\Lambda=\mathbb{Z}_{\geqslant 1}$ simce $m_{i}^{j+1} \subseteq m_{i}^{j}$ says " $j+1 \in \Lambda \Rightarrow j \in \Lambda^{\prime}$.
Simu R is a Pis, write $x=(a)$ a $\neq 0$ \& $m_{i}=(x) \quad x \neq 0 \&$ witaunit

- $a \subseteq m_{i}^{j}$ Tonslates to $a=b_{j} x^{j}$ in each jul

Since R is a domain $a=b_{j+1} x^{j+1}=b_{j} x^{j}$ yields $b_{j}=b_{j+1} x$, and so we get an ascending chain of ideals in R :

$$
\left(b_{1}\right) \subseteq\left(b_{2}\right) \subseteq\left(b_{3}\right) \subseteq
$$

Since R is Noetherian \exists_{m} with $\left(b_{m}\right)=\left(b_{m+1}\right)=\cdots$
This, $b_{m}=b_{m+1} x \& b_{m+1} \in\left(b_{m}\right)$ gites $b_{m+1}=c b_{m}$ fo $\operatorname{cin} R$ $\Rightarrow b_{m}=\left(c b_{m}\right) x=b_{m} c x$ gives $1=c x$, which cannot scan because $x \in m_{i}$ malideal.
Conclusion: Λ is bounded say $\Lambda=\left\{1, \ldots, N_{i}\right\}$
By construction, $a \subseteq m_{i}^{N_{i}} \& \quad \alpha \notin m_{i}^{N_{i+1}}$. This frees $n_{i} \leqslant N_{i}$ 口 By intersecting a with $m_{i}{ }^{N_{i}}$ we gt:

$$
a=x \cap m_{i}^{N_{i}}=m_{1}^{n_{1}} \cap \cdots \cdots \cap(\underbrace{m_{i}^{n_{i}} \cap m_{i}^{N_{i}}}_{=m_{i}^{N_{i}}} \cap \cdots \cap m_{l}^{n_{l}}
$$

Condusin: $a=m_{1}^{N_{1}} \cap \ldots \cap m_{l}^{N_{l}}$ is a nduced primary decomposition. (assoce.
Now: $\alpha=m_{1}^{n_{1}} \cap \ldots \cap m_{l}{ }^{l} l=m_{1}^{N_{1}} \cap \ldots \cap m^{N_{l}}$ with $n_{i} \leqslant N_{i} \forall i=i$

- We want to show $n_{i}=N_{i} \quad \forall i$

Sima $m_{i}, \ldots m_{l}$ are different maximal ideals, they are pairwise optime and so are $\left\{m_{1}^{n_{1}}, \ldots, m_{l}^{n_{l}}\right\}$ \& $\left\{m_{1}^{N}, \ldots, m_{l}^{N_{2}}\right\}$ (extend Lummal, Letare 27)
So

$$
\begin{aligned}
& m_{1}^{n_{1}} \cap \cdots \cap m_{l}^{n_{l}}=m_{1}^{n_{1}} \cdots m_{l}^{n_{l}} \\
& m_{1}^{N_{1}} \cap \cdots m_{l}^{N_{l}}=m_{1}^{N_{1}} \cdots m_{l}^{N_{l}}
\end{aligned}
$$

Write $m_{i}=\left(x_{i}\right)$ $n i=1, \ldots, l$, so $\quad m_{1}{ }^{n_{1}} \cdots m_{l}{ }^{n} l=\left(x_{1}^{n_{1}} \cdots x_{l}{ }^{n_{l}}\right)$

$$
m_{1}^{N_{1}} \ldots m_{l}^{N_{l}}=\left(x_{1}^{N_{1}} \ldots x_{l}^{N_{l} l}\right)
$$

Since $x_{1}^{n_{1}} \cdots x_{l}^{n_{l}} \in\left(x_{1}^{N_{1}} \cdots x_{l}^{N_{l}}\right)$ we get $x_{1}^{n_{1}} \cdots x_{l}^{n_{l}}=c x_{1}^{N_{1}} \cdots x_{l}^{N_{l}}$ in some $c \in R$
 If $n_{i}<N_{i}$ forme i, then we get $i \in m_{i}^{N_{i}^{-n_{i}}} \subseteq m_{i}$, which cant happen. This ends our proof.

Cocollany: Assume R is a P is \& $\mathrm{tix} x \in R \backslash\langle 0\rangle$. Then x can be aniguly writen as $x=u p_{1}^{n} \cdots p_{l}{ }^{n} e \quad$ where
(1) u is a unit $m R$
(2) $n, \ldots, n_{l} \geqslant 0$ an imtegers
(3) $p_{1}, \ldots p_{l}$ an prime elements in R (maving $\left(p_{i}\right)$ is apinice with $\left(p_{i}\right) \neq\left(p_{j}\right)$ if $i \neq j$ \& $\left\{\left(p_{1}\right), \ldots,\left(p_{l}\right)\right\}$ is unique
Dfimition: A commutentere ring R satisfiging (1) $-(3$) is called a unique factorisatim domain (U.F.D.)

Rimark: On corollay says all PIDs an UFDs.

Paod of Corollavy: Compine Theouml \& Cemma 3 to corite

$$
(0) \neq(x)=\left(p_{1}^{n_{1}}\right) \cap \ldots \cap\left(p_{l}^{n_{l}}\right)=\left(p_{1}\right)^{n_{1}} \cap \ldots \cap\left(p_{l}\right)^{n_{l}}
$$

$.\left(p_{1}^{n}\right), \ldots,\left(p_{l}\right)^{n_{l}}$ are unique $\Rightarrow \cdot n_{1}, \ldots, n_{l}$ ane unique \&

$$
\text { - }\left(p_{i}\right)=r\left(\left(p_{i}\right)^{n_{i}}\right) \text { are unique }
$$

- The proof of Thurem 1 says $\left.n_{i}=\max i_{n}: x \in\left(p_{i}\right)^{n}\right\}$. so thyy ane unique!

Example: $I_{n} \mathbb{Z}_{ \pm 1,0} \neq^{m}= \pm p_{1}{ }^{n}, \ldots p_{l}{ }^{n} l \quad p_{i}$ distenct primes (>0) coresfonds $\tau_{0}(m)=\left(p_{1}\right)^{n_{1}} \cap \ldots \cap\left(p_{l}\right)^{n_{l}}$.

- $(\pm 1)=\mathbb{Z}$ has no primacy comprent sthen than \mathbb{Z} itself, so $l=0$ fr $m= \pm 1$

