$$\frac{\lfloor ective 29:}{2}$$
 Fibs: Painary Decomposition for Fibs (240)

$$\frac{\lfloor ective 29:}{2}$$
 Fibs: Painary Decompositions for ideals of Northerian ranges

$$\frac{\exists efficiency}{\exists efficiency}$$

$$\frac{defficiency}{deficiency}$$

$$\frac{defficiency}{defficiency}$$

$$\frac{defficiency$$

Lemma 1: Fix a PID R a a non-que prime ideal B of R. Then,
B is a maximal ideal of R.
Suppl: Write
$$B = \{a\}$$
 with $a \neq o$ (R is a PID a B is an ideal)
Assume $B = \{a\} \subseteq I_{a}\{b\} \subseteq R$: Ne nucl to show $I = R$.
Since $a \in \{b\}$ we can write $a = bc$ for $c \in R$.
If $I \neq B$ then $b \notin B$. The prime condition gives $c \in B$, so $c = ax$.
Then $a = bc = bax$, is a $dmain$, we conclude $bx - 1 = 0$, so bis aunit
a thus $I = R$.
Croblary If q is a nonzero primary ideal in a PID, then $\Gamma(q)$ is a
maximal ideal.
 Q : What note can we say about primary components?
Lemma 2 IF R is a PID $a q \neq 10$ is a primary ideal, then
 $q = M^n$ for some maximual ideal ($M = \Gamma(q)$)
Since R is a PID, we have $q = (q) \notin M = (p)$ with $p^n \in q$ for some not.

Sick smallest such n, ie
$$p^n \in q$$
 but $p^{n-1} \notin q$.
• Since $q \in (p)$, we have $q = p \times (p \text{ some } \times (p^n \in q))$ we have $p^n = q \cdot q$ for some $\chi \in \mathbb{R} \setminus M$ (otherwsin, we get $p^n = q \cdot q = (p \cdot x) \cdot g = q \cdot q = (p \cdot x) \cdot g = (p^{n-1} \times q) = 0$
Since $\mathbb{R}^n = q \cdot q = (p \cdot x) \cdot g = q \cdot q = x \cdot y = y \cdot x \in M^{n-1}$
• But M^{n-1} is a primary ideal $(\Gamma(M^{n-1}) = M \text{ is maximal})$, so
 $y \times \in M^{n-1} \cdot x \cdot y \notin M = \Gamma(M^{n-1})$ frees $X \in M^{n-1}$ (definition of primary ideal)

This statement has a cucial consequence:
Theorem (Seconomy Decompositions for PIDS)
Fix a morpho purple ideal & of a PID R. Thus, there exists
primary ideals
$$q_1, ..., q_d$$
 of R satisfying:
(i) $\delta t = q_1 \cap \cdots \cap q_d$ ("Primary Decomposition of $\delta t''$)
(2) $q_i \neq \prod q_j$ (no educidancies in (1))
(3) $1 \otimes_i = \Gamma(q_i) \otimes_{1 \le i \le d}$ are distinct non-two prime ideals of R decomp.
Turthermore, $Hin(\delta t) = Ass(\delta t), \& q_{11} \cdots q_d$ are uneque.
Is all unique prime ideals are maximal (so Ass(∞) $\le Hin(\infty)$)
 $3F/Use$ existence of reduced primary decomp for Noetherian name,
(Lecture 28, Thus i a lemma). For the uniqueness, we that $M_i = \Gamma(q_i)$ is
maximal by Lemma 1 $\& q_i = M_i^{N_i}$ by Lemma 2. In particular,
any 2 addiced primary decompting are minimal (Lecture 28, Luman 2)
The Associated primes are unique because they are minimal (Lecture 28, Luman 2)
To finish, we have to show $N_i = s_i$ for each s_i .
(Latim $n_i \in max$) $n \ge i$ $\mathcal{A} \subseteq M_i^{N_i}$ (This will be cucial to show
 SF/ \mathcal{A} is prove a $M_i \in Hin(\delta t)$ so $\mathcal{A} \subseteq M_i^{N_i}$.
(Leture 28, then to show $N_i = s_i$ for each s_i .
(Leture 28, then to show $N_i = s_i$ for i that then is one with
 $M_i \in M_i \in M_i \in M_i$ is finite. If not, this will prece
 $M_i \in M_i \in M_i \in M_i \in M_i^{N_i}$ is finite. If not, this will free
 $A = \mathbb{Z}_{\geq i}$ since $M_i^{M_i} \subseteq M_i^{N_i}$ says $m_i = (x)$ $x \neq o$ intermined
 $A = \mathbb{Z}_{\geq i}$ since $M_i^{M_i} \in M_i \otimes a_i = (a)$ $a \neq o$ $a_i : M_i = (x)$ $x \neq o$ intermined

L29(Y) . α ⊆ mi^s translates to a = bj x³ fr each jz, Time Ris a domain $a = b_{j+1}^{j+1} = b_j \times^j$ yields $b_j = b_{j+1} \times$, and so we get an ascending chain of ideals in R: $(b_1) \subseteq (b_2) \subseteq (b_3) \subseteq \cdots$ Since R is Northenian In with (bm) = (bm+1) = Thus, b_m=bm+1 × & bm+1 ∈ lbm) gives bm+1 = cbm for cùrR \implies $b_m = (cb_m) \times = b_m c \times y_i s_i s_i s_j = c \times , which cannot occur$ because x GM; mxlideal. Inclusion: A is bounded say A= 51, -- , N; } By construction, a ⊆ Mi^Ni & a ⊈ Mi^Ni⁺¹ This forces ni ≤ Ni □ By intersecting & with Mi^{Ni} we get: $\boldsymbol{\alpha} = \boldsymbol{\alpha} \cap \boldsymbol{m}_{i}^{N_{i}} = \boldsymbol{m}_{i}^{n_{i}} \cap \cdots \cap (\boldsymbol{m}_{i}^{N_{i}} \cap \boldsymbol{m}_{i}^{N_{i}}) \cap \cdots \cap \boldsymbol{m}_{\ell}^{n_{\ell}}$ = m.Ni $\frac{G_{mclusin}}{M_{m}}: = M_{n}^{N_{1}} \cap \cdots \cap M_{n}^{N_{k}} \text{ is a reduced primery decomposition.}$ $Now: = M_{n}^{N_{1}} \cap \cdots \cap M_{n}^{N_{k}} = M_{n}^{N_{1}} \cap \cdots \cap M_{n}^{N_{k}} \text{ with } u_{i} \in N_{i} \text{ tz}$ · We want to show ni = N; Yi Since M_{j} ... M_{ℓ} are different maximal ideals, they are pairwise coprime and so are $M_{j}^{n_{j}}$..., $M_{\ell}^{n_{\ell}}$? $M_{\ell}^{n_{\ell}}$? Lextend Lemma 1, Lecture 27 (extend Lemma 1, Lecture 27) $m_1^{n_1} \cap \cdots \cap m_{\ell}^{n_{\ell}} = m_1^{n_1} \cdots m_{\ell}^{n_{\ell}}$ 8 by Problem 2 HW7 $M_1^{N_1} \cap \dots \cap M_k^{N_k} = M_1^{N_1} \dots M_k^{N_k}$ Write $M_{i} = (x_{i})$ $\{n_{i} = 1, ..., \ell, s_{0}, \dots, M_{\ell}\}^{n_{\ell}} = (x_{1}^{n_{1}} \cdots x_{\ell}^{n_{\ell}})$ $M_1^{N_1} - M_2^{N_2} = (x_1^{N_1} - x_2^{N_2})$ Since $x_1^{n_1} - x_2^{n_2} \in (x_1^{n_1} - x_2^{n_2})$ we get $x_1^{n_1} - x_2^{n_2} = C x_1^{n_1} - x_2^{n_2}$ In some CER $I = C \times_{1}^{N_{i}-N_{i}} \cdots \times_{\ell}^{N_{\ell}-N_{\ell}} \in \mathcal{M}_{i}^{N_{i}-N_{\ell}}$ since nisnia Risadmain, we get IF ni<Ni frame i, then we get IE Mi^{Ninc} Mi, which can't hoppen. This ends our proof.

Corollary: Assume R is a PID & fix
$$x \in \mathbb{R} \setminus \{0\}$$
. Then x can be ^{L29E}
uniquely written as $x = (l p_1^m) \cdots p_2^m p_1^m$ where
(1) a is a unit in R
(2) $n_1, \dots, n_k \ge 0$ an integers
(3) $p_1, \dots p_k$ are prime elements in R (maning (p_i) is a prime
with $(p_i) \neq (p_j)$ if $(\neq j \in \{1, 1\}, \dots, (p_k)\}$ is unique
Definition: A commutative ring R satisficing (1) -(3) is called
a unique factorization domain (UF.D.)
Remark: Our cirollary says all PIDs are UFDs.
Scool of Coollary: Complime Theorem 1 & Lemma 3 to write
 $(0) \neq (x) = (p_1^m) \cap \dots \cap (p_k^m p) = (p_1)^m \cap \dots \cap (p_k)^{n_k}$
 $e(p_1^m) = r[(p_1^m))$ are unique \ge
 $p_{(1)} = r[(p_1)^m)$ are unique
 \therefore The proof of Theorem 1 Says $n_i = \max h_{1, 1} \times (e(p_1^m)^n)$ so

they are unique !

 $\frac{E \times ample}{\pm 1,0} \text{ In } Z := \pm p_1^{n_1} \cdots p_l^{n_l} p_l \text{ distinct primes (>0)}$ $\text{ corresponds To } (m) = (p_1)^{n_1} \cap \cdots \cap (p_l)^{n_l}.$ $(\pm 1) = Z \text{ has no primary component other than } Z \text{ itself, so } L = 0 \text{ for } m = \pm 1$