Lecture 32: Rational normal from \& Jordan canonical proms
In the last lecture, we saw 2 ways \bar{T} classify non-zero finitely geurated Torsion modules ser a PID R:
Classification Thurem 1: If $(O) \neq M$ is a Fg Torsion nodule over a $P \mid D R$, then:
 with $n_{i}=v_{1}^{(i)} \geqslant v_{2} \geqslant \ldots \geqslant v_{s} \geqslant 1$ \& the sequence $\left(v_{i}\right)$ is uniquely determined by $M \& p_{i}$.

Classification Thu va: If $\Pi \neq(0)$ is a fg Torsim module res a PID R, then $\pi \simeq R /\left(q_{1}\right) \oplus \cdots \in R /\left(q_{r}\right)$
where $q_{i} \neq 0, q_{i} \in R^{X} \forall i$ \& $\left.q_{c}\left|q_{r-1}\right| \cdots\right|_{f_{1}}$,
Furthermore, the sequence of ideals $(q),, \ldots\left(f_{r}\right)$ is uniquely determined by the above conditions.

TOAAY's GOAL: Forms n the case of $\mathbb{K}[x]$-mivelules, where \mathbb{K} is a field of characteristic 0 (in cher p, perfect fields will be needed (see Math 6(12))
§1. $\mathbb{K}[x]$ - modules:
Q: What is a $\mathbb{K}[x]$-moclule?
A. a K-vector space V

- multiplication by X defines a map $x: V \longrightarrow V$
- x. is \mathbb{K}-liner since $\mathbb{K}[x]$-is cmmutatere

$$
x \cdot(a \cdot m) \underset{A \leq s x}{\vdots}(x \cdot a) m \underset{\mathbb{N} \cdot x] \text { am }}{ }=(a \cdot x) m=\sum_{k S s x}^{b} a \cdot(x \cdot m)
$$

Cudude: $\mathbb{K}[x]$-module \longleftrightarrow a \mathbb{K}-vector space $V+\varphi \in E_{\text {nd }}(V)$.
From now on, we assume V has $\operatorname{dim}_{1 K} V=n<\infty$.
So $\varphi \longleftrightarrow A \in$ Mat $_{n \times n}(\mathbb{K}) \quad$ (matixx of the limes roust wet a fired basic)
m D. fine a map $\Psi \mathbb{K}[x] \longrightarrow \mathbb{K}[A] \subset E_{n d_{\mathbb{K}}}(V)$

$$
P(x) \longmapsto P(A)
$$

- What is $P(A)$? If $v \in V$, then:

$$
P=\sum_{i=0}^{N} a_{i} x^{i} m>P(A)(v)=\sum_{i=0}^{N} a_{i}\left(A^{i}\right)(v) \text {. }
$$

- Ψ is a ring bumomirhlism.

$$
\underbrace{A_{0}^{\prime \prime} \ldots A}_{i \text { times }}
$$

- Um $\Psi=$ sabrina of $E_{n l_{k}}(V)$ generated by $A \not \approx \mathbb{K}$.
- $\operatorname{Ker} \Psi=$? Ideal of $K[x]=$ PID so
$\leadsto \operatorname{ker} \Psi=(f)$ for some $f \in \mathbb{K}[x]$
Lemma: $\operatorname{ker} \Psi \neq(0)$:

ψ is also \mathbb{K}-linear map. If Jer $\psi=(0)$, then
$\mathbb{K}[x] \subseteq \mathbb{K}[A] \quad$ Cuts!
int dirndl fou sion'l

Name: $f \neq 0$ ms take $q_{A}(x)=\frac{1}{\operatorname{LT}(f)} f$ (munic) $q_{A}(x)=$ mimimal prlynnicial of A oren k.
\$2. Cyclic case:
Proporition Asseeme we hore $v \in V$ s.t. $V=k[x] \cdot v$, ie V is gemerated by $\left.3 v, A v, A^{2} v, \ldots.\right\}$ (oren $\left.\mathbb{K}\right)$ (V iscyclic). Then,
(1) $d g\left(q_{A}\right)$ is minimal integer $d \geqslant 0$ s.t
$\left\{v, A v, \ldots, A^{d} v\right\}$ is ℓd, ie:

- $\left\{v, A v, \ldots, A^{d-1} v\right\}$ is $l i$
.$\left\{v, A v, \ldots, A^{d} v\right\}$ is ℓd.
(2) Furthermare, in this srituatim $\left.3 v, A v, \ldots, A^{d-1} v\right\rangle$ is a basis for V.

3F/ Since V is $f . \operatorname{dim}^{\prime} l$ we hase $\{r, A v, \ldots, A d r\}$ id fosmed (2) If d is mimimal, then $\left\{r, A r, \ldots, A^{d-1} v\right\}$. is $l i$.

We daim $A^{d} v \in \operatorname{Span}\left(v, A_{v}, \ldots, A^{d-1} v\right)$ \& by inductum $m k \geqslant 0 \quad A^{d+k} v \in$

So $\left.3 v, A v, \ldots, A^{d-1} v\right\}$ is a basis for V.
(1) Write a mutrinial l.d relation:

$$
a_{0} v+a_{1} A v+a_{2} A^{2} v+\cdots+a_{d-1} A^{d-1} v+a_{d} A^{d} v=0
$$

Since $a_{d} \neq 0$, we can asseem $a_{d}=1$. Call: $h_{(x)}=\sum_{i=0}^{d} a_{i} x^{i}$
We daim $h=q_{A}$
(1) $h \in \operatorname{ker} \Psi\left(h(A)_{(v)}=0, \quad h(A)(A v)=A h(A)_{(v)}=0\right.$,

$$
\begin{aligned}
& \therefore h(A)\left(A^{l} v\right)=A^{l} \underbrace{h(A)(v)=0 . m>h(A) \mid v}=0) \\
& \Rightarrow h=q_{A} \dot{g} \quad f>g \in \mathbb{K}[x]=0
\end{aligned}
$$

(2) If dey $q_{A}<$ dy $h=d \Rightarrow$ we would hase a defendmcy ulation ir $\left.3 v, A v, A^{2} v, \ldots, A^{d-1} v\right\} \quad$ Conts!

Conclude: $\operatorname{dog} f_{A}=\operatorname{dgh} h, q_{A} \mid h$ \& both are manic $\Rightarrow q_{A}=h$
Cowllany 1: If V is cyclic as a $\mathbb{K}[x]$-module and
$f_{A}=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}$, then in the basis
$\left.B=3 v, A v, \cdots A^{d-1} v\right\}$ we have

Corollary 2: If V is usclic, then: $V \simeq \frac{\mathbb{K}_{[x]}}{q_{\Lambda(x)}}$ (as \mathbb{K}-res.)
(Why? $\quad \mathbb{K}[x] \xrightarrow{\varphi} V$ is sui $\& \operatorname{Ker} \varphi=\left(q_{A}(x)\right)$)

$$
f(x) \longmapsto f(v)
$$

Mreores $f_{A}(x)$ is independent of the choice of generator of for V = an invariant of V.
$\frac{(\text { Reason }}{(H W \mid 0)}: \frac{\mathbb{K}[x]}{(F)} \simeq \frac{\mathbb{K}[x]}{(g)} \Longleftrightarrow \operatorname{deg} f=\operatorname{dogg} \quad($ same dim!))
§ 3 Nm -cyclic case:
Q: What haffens in the min-cyclic case?
A: Classification Thurems fo fo Trim modules / $\mathbb{K}[x]$.
Obs: $\operatorname{dim}_{k} V<\infty$, then V is a Torsion module ser $\mathbb{k}[x]$.
($q_{A}(A)=0$ endomorphism, maxing $q_{A}(A)(\omega)=0 \forall \omega \in V$)
Theorem 1: $V K$-recto space \& $A \in E_{n}(V) \quad A \neq 0$. Then, V admits a direct sem decompsritim: $V=V, \oplus \cdots\left(\oplus V_{r}\right.$
where each V_{i} is a cyclic $K_{[x]}$-module with invariants $q_{i} \neq 0$, satisfying $q_{1}\left|q_{2}\right| \ldots \mid q_{r}$ Furthermore, the sepenence $\left(q_{1}, \ldots, q_{r}\right)$ is uniquely determined by $V \& A$, \& $q_{r}=q_{A}$.

If/ Classification Thioum vi gives the gi's. Uniqueness also follows". To finish: $\operatorname{Anu}(v)=\left(q_{A}\right) \ni q_{r}$ since $q_{i} l q_{r} \quad \forall i$ But $q_{r} \mid q_{A}$ since $q_{A}(x) \cdot V_{r}=0 \quad$ so $q_{r}=q_{A}\left(\begin{array}{c}\text { (th } \\ \text { mic) }\end{array}\right]$
Corollary: V admits a basis B with

$$
[A]_{B B}=\left[\begin{array}{ccc}
C_{q_{1}} & . & 0 \\
0 & \ddots & \\
& & \sqrt{C_{q_{r}}}
\end{array}\right]
$$

$C_{q_{i}}=$ comparing matin los each q;

This is know as the national urial from frA.
($A \sim R N F(A)$ where $A \sim C$ iff $\exists Q \in G L_{n}(\mid K)$ with

$$
A^{\prime}=Q^{-1}(Q)
$$

3F/ Pick v_{i} generator for $\left.V_{i} \leadsto B_{i}=3 v, A_{v}, \cdots, A_{i-1}^{d_{i}}\right\}$ with $d_{i}=\operatorname{dog} q_{i}$. Then, take $B=B_{1} \cup \cdots \cup B_{r}$.
Q: What about alterative Classification Then?
We factor $q_{A}(x)=p_{1} n_{1}(x) \cdots p_{S}^{n_{s}}(x)$ into distinct prime powers ($P_{i}(x)=$ manic \& inducible)

- The pi's an the representation of prime elements in $\mathbb{N}[x]$
- Erecything is manic, so no unit is weeded in the factorization

Therenz 2: $V \notin$-rector space \& $A \in E_{n}(V) \quad A \neq 0$. Then, V admits a direct sem decomposition: $V=V_{p_{1}^{n_{1}}} \oplus \cdots V_{p_{r}{ }^{n} \text { c }}$
Furthermore, each $V_{p i}{ }_{i}{ }^{i}$ can be express as a dict sum of submudules ismarphic to $k[x]$
(with $n_{i}=\nu_{1}^{(i)} \geqslant \cdots \geqslant \nu_{s_{i}}^{(i)}$)
§4. Jordan conical from:
In the special care when $\mathbb{K}=\overline{\mathbb{K}}$, class $\quad(E g \mathbb{K}=\mathbb{C})$ then write $p_{i}=(x-\alpha)$ fo sine $\alpha \in \mathbb{K}$.
Each $\frac{\mathbb{K}[x]}{\left(p_{i}\right)^{m}}$ piece girts a cyclic subuardule $W_{\text {pirn }} \neq(0)$ of V of
Thorium 3: $W_{p_{i}, m}$ has a basis B seer \mathbb{K} such that

Bf/ $W_{p_{i} ; m}$ is generated by some $\omega \in V$.
Claim: $B=\left\{\omega,(A-\alpha) \omega, \cdots,(A-\alpha)^{m-1} \omega\right\}$ is a basis.

- LI : $(x-\alpha)^{m}$ is the minimal pplypumial of $W_{p i}, m$.

Any dependency will yield a prlyannial g with $g(A) \mid=0$.

- Span: Proporitim han early on + binomial Theorem.
(Alternative $|B|=\operatorname{dim} W_{\text {sim }}$.)
- Note: $(A-v)^{k+1}(\omega)=(A-\alpha)\left((A-\alpha)^{k}(\omega)\right)$ yields

$$
A(A-\alpha t)^{k+1}(\omega)=(A-\alpha)^{k+1}(\omega)+\alpha(A-\alpha)^{k}
$$

Also $(A-v)^{m}(\omega)=0 \quad \sin \alpha \quad q_{\left.A\right|_{w_{p}, m}}=(x-\alpha)^{m}$.
So $\left[\left.A\right|_{w_{p, m}}\right]_{B}$ has the desired shape.
Corollary: Given $V \& A$ with $q_{1}=p_{1}^{n_{1}} \cdots p_{r}^{n_{n}}, \exists B$ basis for V with. $[A]_{B}=\left[\begin{array}{cc}A_{1} & 0 \\ \hdashline 0 & \sqrt{A_{C}}\end{array}\right]$ block diagmal de any y

Furthermire for $P_{i}=\left(x-\alpha_{i}\right)$, we have.

$$
A_{i}=\left[\begin{array}{ccc}
J\left(\alpha_{\left.i, m_{1}^{(i)}\right)}\right. & 0 \\
0 & \ddots & \\
& \sqrt{J\left(\alpha_{i}, m_{s i}^{(i)}\right)}
\end{array}\right] \begin{gathered}
\text { with } \\
n_{i}=m_{1}^{(i)} \geqslant \cdots \geqslant m_{s i}^{(i)}
\end{gathered}
$$

- This block decomproitim is the Jrdan canmical frem of the matux A.

