Lecture 33: Jordan causaical froms, (aging Hamilton Theorem
Recalle A 1K(x)-module II = a K-vector space V and a K-biman map F:V
$$\xrightarrow{K} \rightarrow V$$

If due V c= and F is uprented by an intera A, then
the K-biman map $\Psi: K[x] \longrightarrow Galge(V)$ has $\ker(\Psi) = (g_A) \in 1K(x)$
 $\Psi = \frac{1}{K} + \frac$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

Furthermore for $p_i = (x - \alpha_i)$, we have.

$$A_{i} = \begin{bmatrix} J(\alpha_{i}, m_{i}^{(i)}) & 0 \\ 0 & J(\alpha_{i}, m_{s_{i}}^{(i)}) \end{bmatrix} \qquad \text{with} \\ h_{i} = m_{i}^{(i)} \ge \dots \ge m_{s_{i}}^{(i)}$$

. This block decomposition is the Jordan commical from of the matrix A.

5.2 Characteristic prhynomial:
Find V an n-kin'l K-vector space
$$\in A: V \longrightarrow V$$
 a k-linear
map. We have $K[X] \longrightarrow K[A]$
 $\times \longrightarrow A$
 $D \downarrow$: We define the characteristic prhynomial A as
 $\chi_A = det (XI_n - A)$
 $Obs. IJ A \cap C$, meaning $C = G^{-1}A G$ for $G \in GL_n(K)$
then, $\chi_C = \chi_A$.
Indeed: $\chi_C = det (XI_n - G^{-1}AG)$
 $= det (G^{-1}(XI - A)G) = det G^{-1} det(XI_n - A) detG$
 $= \chi_A$
Lemma : IF $\Psi: K \longrightarrow K'$ is a homomorphism of rings
between a fields, then: $\chi_{\Psi(H)} = \Psi(\chi_H)$
(Here, Ψ extends to $\Psi: K(\chi) \longrightarrow K'[\chi]$)
Snoof: Exercise.

૮૩ઙઊ

$$lug F = i : \qquad \chi_{C} = lut (x+a_{0}) = x+a_{0} \qquad C_{x+a_{0}} = [-a_{0}]^{(n)}$$

$$lug F = m \qquad \dots p F = \lambda^{m} + a_{m-1} x^{m-1} + \dots + a_{0}$$

$$C_{F} = \begin{bmatrix} 0 & -a_{0} \\ -a_{1} \\ 0 & -a_{1} \\ -1 & x & a_{2} \\ -1 & x & a_{1} \end{bmatrix}$$

$$lut(xI_{m}-C_{F}) \qquad is computed by column exponential:$$

$$\chi_{C_{F}} = x \quad but \begin{bmatrix} x & \dots & a_{0} \\ -1 & x & a_{1} \\ 0 & -1 & x \\ -1 & x & a_{1} \\ -1 & x & a_{1} \\ 0 & -1 & x \\ -1 & x & a_{1} \\ 0 & -1 & x \\ 0 & -1 & x \\ -1 & x & a_{1} \\ 0 & -1 & x \\ -1 & x & a_{1} \\ 0 & -1 & x \\ -1 & x & a_{1} \\ 0 & -1 & x \\ -1 & x & a_{1} \\ 0 & -1 & x \\ -1 & x & a_{1} \\ 0 & -1 & x \\ -1 & x & a_{1} \\ 0 & -1 & x \\ -1 & x & a_{1} \\ 0 & -1 & x \\ -1 & x & a_{1} \\ 0 & -1 & x \\ -1 & x & a_{1} \\ 0 & -1 & x \\ -1 &$$

We know we can find d with
$$B_{1}^{\prime}v, Av, \dots, A^{d-1}v \in a^{233}(E)$$

basis for V'. Assume den $V = n$.
We extend B' to a basis B of V. Then we get
 $[A]_{SB} = 2 \begin{bmatrix} d & n-d \\ A_{1} & A_{2} \\ 0 & A_{3} \end{bmatrix}$ where $A_{3} = \begin{bmatrix} 0 & 0 & -a_{0} \\ 1 & 0 & 0 & -a_{0} \\ 0 & 1 & -a_{1} \end{bmatrix}$
So $A_{1} = C_{g}A_{1}v^{\prime}$

This using the same block decomposition, we set.

$$\chi_{\mathbf{A}} = \chi_{\mathbf{A}_{1}} \cdot \chi_{\mathbf{A}_{3}} \cdot \underset{1}{=} \underset{\substack{1 \\ \text{lemma}}{=} \chi_{\mathbf{A}_{1}} \cdot \chi_{\mathbf{A}_{3}} \cdot \underset{1}{=} \underset{\substack{1 \\ \text{lemma}}{=} \chi_{\mathbf{A}_{3}} \cdot \chi_{\mathbf{A}_{3}} = \chi_{\mathbf{A}_{3}} \cdot \underset{\substack{1 \\ \text{lemma}}{=} \chi_{\mathbf{A}_{3}} \cdot (\mathbf{A}) \cdot (\mathbf{A}) \cdot (\mathbf{A}) \cdot (\mathbf{v})$$

$$= \chi_{\mathbf{A}_{3}} \cdot (\mathbf{A}) \cdot (\chi_{\mathbf{A}_{3}} \cdot (\mathbf{A}) \cdot (\chi_{\mathbf{A}_{3}} \cdot (\mathbf{A})) \cdot (\psi) = 0$$

$$= \chi_{\mathbf{A}_{3}} \cdot (\mathbf{A}) \cdot (\chi_{\mathbf{A}_{3}} \cdot (\mathbf{A}) \cdot (\chi_{\mathbf{A}_{3}} \cdot (\mathbf{A})) = 0$$

$$= \chi_{\mathbf{A}_{3}} \cdot (\mathbf{A}) \cdot (\chi_{\mathbf{A}_{3}} \cdot (\mathbf{A}) \cdot (\chi_{\mathbf{A}_{3}} \cdot (\mathbf{A})) = 0$$

Obs: The result is true for matrices over any commutative ring R We can show this by proving the polynmial $\chi_{A}(\chi) = \chi^{n} + b_{n-1}\chi^{n-1} + \dots + b_{0}$ where $b_{i} \in \mathbb{Z}[a_{ij}]$ vanishes on $A = (a_{ij})$ inside a <u>dense ofen set</u> of Hat_{new}(R) We can bick dragmalizable matrices as such set.

. Alternative 1 rook: Using Cofactor matrices (see HWII)