Lecture 33: Jordan canonical frems, Cayly-Hamilton Theorem

If $\operatorname{dum}_{\mathbb{K}} V<\infty$ and f is upresunted by a matrix A, then
the K-linear map $\Psi: \mathbb{K}[x] \longrightarrow E_{n d}(V)$ has $\operatorname{Ker}(\Psi)=\left(q_{A}\right) \subseteq \mathbb{K}_{(x]}$ $P \longmapsto P(A)$ mic
Name: $q_{A}=$ minimal preyumial fr $A . \& M$ is a $\mathbb{K}_{[x]}$ trim module

- Classification $v_{2}: \Rightarrow M \simeq \mathbb{K}[x] /\left(q_{1}\right){ }^{\oplus} \cdots \mathbb{K}(x] /\left(q_{r}\right)$ with $q_{r}\left|q_{r-1}\right| \cdots q_{q_{1}}$

Thoron 1: V admits a basis B our \mathbb{K} with

$$
\begin{aligned}
& {[A]_{B B}=\left[\begin{array}{ccc}
C_{q_{1}} & & 0 \\
0 & \ddots & \\
0 & & \sqrt{C_{q_{r}}}
\end{array}\right]} \\
& C_{q_{i}}=\text { cmpanim maturing } \\
& \text { frs each } q_{i}=\sum_{i=1}^{n_{i}} a_{i} x^{i}
\end{aligned}
$$

This is know as the national urial from for A. ($A \sim \operatorname{RNF}(A)$ where $A \sim C$ iff $\exists Q \in G L_{n}(\mid K)$ with $A=Q^{-1}(Q)$
Q: What about alternative Classification Then?
We factor $q_{A}(x)=p_{1}^{n_{1}}(x) \cdots p_{S}^{n_{s}}(x)$ into distinct prime powers ($P_{i}(x)=$ manic \& inducible)

- The pi's an the representatives of prime elements in $\mathbb{K}[x]$. Chose then
- Erengthing is manic, so no unit is needed in the factorization.

Therese: $V V$-rector space \& $A \in E_{n d_{k}}(V) \quad A \neq 0$. Then, V admits a direct sem decomposition: $V=V_{P_{1}^{n_{1}}} \oplus \cdots\left(\oplus V_{P_{r}^{n} c}\right.$
Furthermore, each $V_{p_{i}^{n i}}$ can be express as a dict sum of submondules ismorphic $\left.\tau_{0} \mid k[x] / \operatorname{Pl}_{i}^{(i)}\right) \quad$ (with $n_{i}=\nu_{1}^{(i)} \geqslant \cdots \geqslant \nu_{s_{i}}^{(i)}$)
§ 1. Jordan conical from:
In the special care when $\mathbb{K}=\overline{\mathbb{K}}$, class $\quad(E g \mathbb{K}=\mathbb{C})$ then write $p_{i}=(x-\alpha)$ for sum $\alpha \in \mathbb{K}$.
Each $\frac{\mathbb{K}[x]}{\left(p_{i}\right)^{m}}$ piece girts a cyclic subuardule $W_{\text {pirn }} \neq(0)$ of V of
Thorium 3: $W_{p_{i}, m}$ has a basis B seer \mathbb{K} such that

$$
\left[\left.A\right|_{w_{p i m}}\right]_{B}=\left[\begin{array}{lll}
\alpha_{i} & & \\
1 & \ddots & \\
& \ddots & \\
& & \left(m \times \alpha_{i} \text { matrix }\right)
\end{array}\right]=J(\alpha, m)
$$

Bf/ $W_{p_{i} ; m}$ is generated by some $\omega \in V$.
Claim: $B=\left\{\omega,(A-\alpha) \omega, \cdots,(A-\alpha)^{m-1} \omega\right\}$ is a basis.

- LI: $(x-\alpha)^{m}$ is the minimal polynomial of $W_{p_{i}, m}$.

Any dependency will yield a prlyannial g with $g(A) \mid=0$.

- Span: Proporitim han early on + binomial Theorem.
(Alternative $|B|=\operatorname{dim} W_{\text {sim }}$.)
- Note: $(A-v)^{k+1}(\omega)=(A-\alpha)\left((A-\alpha)^{k}(\omega)\right)$ yields

$$
A(A-\alpha t)^{k+1}(\omega)=(A-\alpha)^{k+1}(\omega)+\alpha(A-\alpha)^{k}
$$

Also $(A-v)^{m}(\omega)=0 \quad \sin \alpha \quad q_{\left.A\right|_{w_{p}, m}}=(x-\alpha)^{m}$.
So $\left[\left.A\right|_{w_{p, m}}\right]_{B}$ has the desired shape.
Corollary: Given $V \& A$ with $q_{1}=p_{1}^{n_{1}} \cdots p_{r}^{n_{n}}, \exists B$ basis for V with. $[A]_{B}=\left[\begin{array}{cc}A_{1} & 0 \\ \hdashline 0 & \sqrt{A_{C}}\end{array}\right]$ block diagmal de any y

Futhermire for $P_{i}=\left(x-\alpha_{i}\right)$, we hase.

$$
A_{i}=\left[\begin{array}{cc}
J\left(\alpha_{i}, m_{1}^{(i)}\right) & 0 \\
0 & \ddots \\
& \sqrt{J\left(\alpha_{i}, m_{s_{i}}^{(i)}\right)}
\end{array}\right] \begin{aligned}
& \text { with } \\
& n_{i}=m_{1}^{(i)} \geqslant \ldots \geqslant m_{s_{i}}^{(i)}
\end{aligned}
$$

- This blore decomproition is the Jrdan carmical fren of the matux A.
\$2 Characterictic plymmial:
Find V an n-tim' $l K$-recter space \& $A: V \longrightarrow V$ a K-limen map. We have

$$
\begin{aligned}
{ }^{k}[x] & \longrightarrow K[A] \\
X & \longmapsto A
\end{aligned}
$$

Def: We define the characteristic polypumial of A as

$$
x_{A}=\operatorname{det}\left(x I_{n}-A\right)
$$

Obs: If $A \sim C$, maving $C=G^{-1} A G$ f $>G \in G L_{n}(\mathbb{K})$, them, $\quad x_{c}=x_{A}$.
Inderd:

$$
\begin{aligned}
x_{c} & =\operatorname{det}\left(x I_{n}-G^{-1} A G\right) \\
& =\operatorname{det}\left(G^{-1}(x I-A) G\right)=\operatorname{det} G^{-1} \operatorname{det}\left(x I_{n}-A\right) \operatorname{dtG} \\
& =x_{A}
\end{aligned}
$$

Lemma: If $\varphi: \mathbb{K} \longrightarrow \mathbb{K}^{\prime}$ is a hmonurghisen of rimps between 2 pields, then: $x_{\varphi(M)}=\varphi\left(x_{M}\right)$ (Here, φ extends to $\varphi: \mathbb{K}_{[x]} \longrightarrow \mathbb{K}_{[x]}^{\prime}$) Prool: Exercise.
$\$ 3$ Cayley-Hamilton:
Theorem. (Cayley-Hamilton) $\quad X_{A}(A)=0$ lie $q_{A} \mid X_{A}$)
We 'll see two proofs :
(1) Bia Ratimal Nrmal froes
(2) Show: $\left.x_{A}(A)(v)=0 \quad \forall v \in \mathbb{K}^{n}, 30\right\}$ ria $[A]_{B B}={ }^{d}\left[\begin{array}{l|l}d & A_{1} \\ \hline 0 & A_{3}\end{array}\right]$ $B=\{\underbrace{\left\{v, A v, \ldots A^{d-1} v\right\}}_{l i(d \text { mall) }} \cup B^{\prime} \quad$ s use $x_{A}=x_{A_{1}} \cdot x_{A_{3}}$.
Key: $\chi_{C_{q}}=q$ frany $q \in \mathbb{K}[x]$ munic $\underset{\left(C_{q}=\text { =imparim }\right.}{\text { matiox }} \mathbf{(r q)}$
Prod !: We'll use the Ratind Nrind from of A.

$$
\begin{aligned}
& {[A]_{B B}=\left[\begin{array}{llll}
C_{q_{1}} & & \\
& \ddots & \\
& \ddots & \\
& & C_{q r}
\end{array}\right]} \\
& \operatorname{det}\left(x I_{n}-A\right)=\operatorname{det}\left[\begin{array}{c|cc}
x I_{n}-C_{q_{1}} \mid & & 0 \\
& \ddots & \ddots \\
& & \\
\hline x I_{n}-C_{q r}
\end{array}\right] \\
& =x_{c_{q_{1}}} \cdots \underbrace{n_{q_{r}}}_{x_{c_{q_{r}}}} \text { by Limuma below. }
\end{aligned}
$$

so $q_{A} \mid x_{A}$.
Lemuar: $\quad x_{c_{G}}=f \quad$ fr any maic polypanial $f \in \mathbb{K}[x]$.
3f/ By indecteon n digree of f

$$
\begin{aligned}
& \cdot \operatorname{deg} f=1: \quad x_{C_{x+a_{0}}}=\operatorname{let}\left(x+a_{0}\right)=x+a_{0} \quad C_{x+a_{0}}=\left[-a_{0}\right]^{(33) \sin } \\
& \text { - dog } f=m \quad \operatorname{m} f=x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0} \\
& C_{f}=\left[\begin{array}{ccccc}
0 & & & & -a_{0} \\
1 & 0 & & & -a_{1} \\
& & \ddots & \vdots \\
& & & 0 & \vdots \\
& & & & -a_{m-1}
\end{array}\right] \leadsto X I_{m}-C_{f}=\left[\begin{array}{ccccc}
x & 0 & \cdots & \cdots & a_{0} \\
-1 & x & & & a_{1} \\
& -1 & x & & a_{2} \\
& & & \ddots & \vdots \\
& & & & \\
& & & & \\
& & a_{m-1}
\end{array}\right]
\end{aligned}
$$

$d\left(x I_{m}-C_{G}\right)$ is computed by column expansion:

$$
\begin{aligned}
& =x x_{\frac{C_{f-a_{0}}^{x}}{x}}+(-1)^{2 m-2} a_{0} \\
& { }_{1 \mathrm{H}}^{\lambda} \times \frac{f-a_{0}}{x}+a_{0}=f(x)-a_{0}+a_{0}=f(x)
\end{aligned}
$$

Prov/ 2: To show : $x_{A}(A)(v)=0 \quad \forall v$ in V.
Pickle any $v \in V$ \& consider $V^{\prime}=K[A] \cdot v$ that is, the rector space spanned by $\left.3 v, \Lambda v, \Lambda^{2} v, \ldots,\right\}$.
. We know we can find d with $B^{\prime}=\left\{v, A v, \ldots, A^{d-1} v\right\}$ a basis $\mid \gg V^{\prime}$. Assume $\operatorname{dem} V=n$.

- We extend B^{\prime} to a basis B of V. Then we get
$[A]_{B B}=d$
$A_{1}=C_{n-d}$$\left[\begin{array}{c|c|c}d & A_{1}-d \\ \hline 0 & A_{3}\end{array}\right] \quad$ where $\quad A_{1}=\left[\begin{array}{cccc}0 & A_{1} \\ 1 & 0 & 0 & \vdots \\ 1 & \ddots & \vdots \\ 0 & \ddots & a_{d-1}\end{array}\right]$
So $A_{1}=C_{q_{A_{l}}}$

Then using the some block decomporitin, we get.

$$
x_{A}=x_{A_{1}} \cdot x_{A_{3}} \cdot{\underset{\text { Lemma }}{ } q_{A_{V^{\prime}}} \cdot x_{A_{3}}=x_{A_{3}} q_{A^{\prime}} \text {, }}
$$

So

$$
\begin{aligned}
x_{A}(A)(v) & =\left(x_{A_{3}}(A) \cdot q_{A / v^{\prime}}(A)\right)(v) \\
& =x_{A_{3}}(A)(\underbrace{\left.q_{A / V^{\prime}}\right)}_{=0(v)^{\prime}(A)(v)}=0
\end{aligned}
$$

Obs: The result is twee for matrons ore any comutateis ring R We can show this by proving the prlepmaial

$$
x_{A}(x)=x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0} \text { where } b_{i} \in \mathbb{Z}\left[a_{i j}\right]
$$

vanishes on $A=\left(a_{i j}\right)$ inside a dense open set of Mat Man (R) We can pick diagnalizatle matrices as sech set.

- Alternative proof: Usimp Cofactor matrices (see Hwil)

