Lecture 34: Nakayama's Lemma, Basics on Limear Algebra
Recall: Last time we discessed Cagley-Hamitan of $A \in M_{a t}(R) \quad R$ any anmum Therem (Cayley-Hamilton) $\quad x_{A}(A)=0$ lie $q_{A} \mid x_{A}$)
§1 Cousequences of Cayley-Hamil Tor:
Coorlacy 1: Gisen $A \in \operatorname{Mat}_{n \times n}(\mathbb{K}), \exists \subset \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ with

$$
\begin{aligned}
A C=C A & =\operatorname{det}(A) I_{n} \\
3 f / q_{0} & =x_{A}(0)
\end{aligned}=\operatorname{det}(-A)=(-1)^{n} \operatorname{det} A
$$

$C H$ gises $X_{A}(A)=A^{n}+q_{n-1} A^{n-1}+\cdots+a_{0} I_{n}=0$

$$
\Rightarrow-a_{0} I_{n}=A(\underbrace{A^{n-1}+a_{n-1} A^{n-2}+\cdots+a_{1} I_{n}}_{C^{\prime}})=C^{\prime} A
$$

$$
(-1)^{n+1} \operatorname{det} A I_{n}
$$

A connurito with C^{\prime}.
So $C=(-1)^{n+1} C^{1}$ worles.
Obs: $C^{\top}=\operatorname{Cof}(A)=$ cofactor matrix of A with

$$
(\operatorname{cof}(A))_{i j}=(-1)^{i+j} \operatorname{det}\left(A^{(i, j)}\right)
$$

(We'll seethis in a future lecture) \rightarrow A with now i \& col jn remored.
Ex: $n=2 \quad A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

$$
\begin{aligned}
x_{A}=\operatorname{det}\left(\begin{array}{cc}
x-a & -b \\
-c & x-d
\end{array}\right) & =(x-a)(x-d)-b c \\
& =x^{2}-(\underbrace{a+d}_{\pi(A)}) x+\underbrace{a d-b c}_{\operatorname{det} A}
\end{aligned}
$$

$$
\begin{aligned}
X_{A}(A) & =A^{2}-(a+d) A+(a d-b c) I_{2} \\
& =\left[\begin{array}{ll}
a^{2}+b c & b(a+d) \\
c(a+d) & c b+d^{2}
\end{array}\right]-\left[\begin{array}{cc}
(a+d) a & (a+d) b \\
(a+d) c & (a+d) d
\end{array}\right]+\left[\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned} \quad l \left\lvert\, \begin{aligned}
C=(-1)^{3}\left(A-(a+d) I_{2}\right) & =-\left[\begin{array}{cc}
a & b \\
c
\end{array}\right]+\left[\begin{array}{cc}
a+d & 0 \\
0 & a+d
\end{array}\right] \\
& =\left[\begin{array}{cc}
+d & -b \\
-c & +a
\end{array}\right]=\operatorname{cof}\left[\left[\begin{array}{c}
a \\
c \\
d
\end{array}\right]\right)^{\top}
\end{aligned}\right.
$$

Next: Fix R a comuutatise reing.
Corollany 2: Gisen $A \in \operatorname{Mat}_{\text {uxn }}(R), \exists C \in \operatorname{Mat}_{\text {uxn }}(R)$ with

$$
A C=C A=\operatorname{det}(A) I_{n} .
$$

3F/If C^{\top} is the cofacter matixx \& A, then $A C=C A=\operatorname{det}(A) I_{n}$ This gields a prlynomial edutity on $\mathbb{Z}\left[a_{i j}\right]$. So t 's valid one any camuutatiere ring!

- This Corollay gives the equral ression of $C H$ (see $H W / 1$) Theoremi (CH) Frany R cumm ring \& $A \in \operatorname{Mat}_{n \times n}(R)$, we have $\quad x_{A}(A)=0$.
Proof: Show $x_{A}(A)=0$ by using colactor identity in $B=X I_{n}-A$ \& siting $X=A\left(B \operatorname{cof}^{\top} B=\operatorname{cop}^{\top} B \cdot B=\operatorname{dit} B I=x_{A}\left(x I_{n}\right)\right.$

Corollayy 3: $A \in$ Mat $_{n \times n}(\mathbb{R})$ is insertitle if and mly if det $A \in \mathbb{R}^{x}$ PF/ \Leftrightarrow Is char ingatet $(A B)=\operatorname{det} A \operatorname{det} B, \quad \& \operatorname{det} I_{n}=1$. $\Leftrightarrow)$ Use $A C=C A=(\operatorname{det} A) I_{n}$ tume Corollayy z

Then $A^{-1}=(\operatorname{det} A)^{-1} C$.
Nakayama's lcumea Fix (R, m) local comuutotise ring and let M be a finitily genrated R-mudule. If $m M=M$, then $\Pi=0$.

Pf/ Write $M=\left\langle x_{1}, \ldots, x_{n}\right\rangle$. Then, $m M=\left\{\sum_{j=1}^{n} c_{j} x_{j} \quad c_{j} \in m^{(33}\right\}^{(3)}$ In particular $x_{i} \in M=m M \rightarrow \theta$:

$$
x_{i}=\sum_{j=1}^{n} c_{i j} x_{j} \quad \text { with } c_{i j} \in M \text {. }
$$

Then $A=I_{n}-\left(c_{i j}\right) \in \operatorname{Mat}_{n \times n}(R)$ satisfies

$$
A\left[\begin{array}{c}
x_{1} \\
\dot{x}_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
\dot{x}_{n}
\end{array}\right]-\left(c_{i j}\right)\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]-\left[\begin{array}{c}
\sum_{j=1}^{n} c_{1} x_{j} \\
\sum_{j=1}^{n} x_{n j} x_{j}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

Pick $F_{\text {with }} F A=A F=(\operatorname{let} A) I_{n} \cdot\left(\operatorname{eg} F=\operatorname{cof}(A)^{\top}\right)$ Then:

$$
(\operatorname{ut} A)\left[\begin{array}{l}
x_{1} \\
\dot{x}_{n}
\end{array}\right]=F A\left[\begin{array}{l}
x_{1} \\
\dot{x}_{n}
\end{array}\right]=F\left[\begin{array}{l}
0 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
(\operatorname{lt} A) x_{1}=0 \\
(\operatorname{lut} A) x_{n}=0
\end{array}\right.
$$

But $\operatorname{det} A=\operatorname{det}\left(I_{n}-\underset{\substack{(c i)}}{\left(c_{j}\right)}\right) \in 1+m$, so it's a unity.
\Rightarrow Include: $x_{1}=\cdots=x_{n}=0$ so $\left.M=30\right\}$.
(See HWII fr other versing of Nakayama's Lemma a.)
§2. Limen Algebra Basics:
Fin \mathbb{K} a field. Next, we usiew the basic operatives in rector spaces ore KK: Dinct sums, Hums, Dual Vector Spaces
Next time : Tensor pirducts, Symmetric \& Atumatimg (\because Exterior) purducts
\$2.1 Vector Spaces, Limiou Maps:
Iffimition: A vector space oren k is a set V together with 3 operations

$$
\begin{aligned}
&+: V \times V \longrightarrow V \\
&\left(v_{1}, v_{2}\right) \longmapsto v_{1}+v_{2}
\end{aligned}
$$

$$
\left.\begin{array}{l}
v \longrightarrow v \\
v \longmapsto-v
\end{array}\right\}
$$ abdion gp with 0 as the identity dement $I K \times V \longrightarrow V$

$(z, v) \longmapsto z v$ (scalar multiplication)
$\left.\begin{array}{rl}\text { satisfying: } \quad & z\left(v_{1}+v_{2}\right)=z v_{1}+z v_{2} \\ -\left(z_{1}+z_{2}\right) v & =z_{1} v+z_{2} v\end{array}\right\}$ (Distributee)

- $z_{1}\left(z_{2} v\right)=\left(z_{1} z_{2}\right) v \quad$ (Assuriatise)
- $1_{K} \cdot v=v$.
$\forall z, z_{1}, z_{2} \in \mathbb{K}, \quad \forall v, v_{1}, v_{2} \in V$.
Obs: V is a \mathbb{K}-module
Def: A \mathbb{K}-liner map between 2 rector spaces is a group dimorphism $f: V \longrightarrow W$ st $f(z \cdot v)=z f(v) \quad \forall z \in \mathbb{K}$.

Obs: Same definition as hominorphison of K-modules.
$\operatorname{Him}_{K}(V, W)=$ set of all linear maps fume V to W
Prop: $H_{\text {man }}(V, W)$ is a \mathbb{K}-rector space:
SF/(1) $\forall r_{1}, r_{2} \in \operatorname{Hm}_{k}(v, w), r_{1}+f_{2}$ is defined as

$$
\left(f_{1}+f_{2}\right)_{(v)}=f_{1}(v)+f_{2}(v) \quad \forall v \in V
$$

(Easy to check: this new map $f_{1}+G_{2}: V \longrightarrow W$ is \mathbb{K}-linear)
(2) Zeus map $0 \in H_{m_{K}}(V, W) \quad 0: v \longmapsto 0 \quad \forall v \in V$.
(3) Scalar multiplication: $\forall z \in \mathbb{K}, f \in H_{m_{I K}}(V, W)$:

$$
(z f): V \longrightarrow W \quad(z f)_{(v)}=z f(r) .
$$

(Easy to check: this new map $z \cdot G: V \longrightarrow W$ is \mathbb{K}-linion)
Distributive a Asscriatire Laws follow fum Those in $W ; 1 \cdot f=f$ is clear
Note: We never really used The rector space stuncture of V in the definition of the rector space stucture on $H_{m i k}(V, W)$. The same would work To make $H_{\text {men }}(X, W)$ a rector space when X is any set \& W is a K-ueter space.

Remark: If V \& W are firite-dimensinal, with $d m ~ V=n, d e m b=m^{3 \prime}$, then $\operatorname{HM}_{K}(V, W)$ can be idutified with Mat $m \times n(I K)$. This
 W, restectirily. Then $f \in H_{m}(V, W)$ can be expressed as $f\left(v_{i}\right)=\sum_{j=1}^{m} a_{j i} w_{j} \quad m>N=\left(a_{j i}\right)_{\substack{j=1, \ldots, m \\ i=1, \cdots, n}} \in \operatorname{Mat}_{m \times n}$ (K)
Furthermore $[f(v)]_{B_{w}}=A[v]_{B_{v}} \quad[]_{B_{w}} \in K^{m}$
Notation $A=[f]_{B_{v} B_{w}}$.

$$
\int_{B_{v}} \in \mathbb{K}^{n}
$$

§2.3 Bases:
We use the same defpuitim as pee-mudules
Def: B is abasis fo V if $V \simeq \bigoplus_{V \in B} \mathbb{K}$. $\left\{\begin{array}{l}-B \text { is limeorly independent } \\ \cdot B \text { spans } V\end{array}\right.$

- Equivalently: ser r in V can be written uniquely as a limancml. of elements in B
- Eprindently: B is maximal linearly independent set (HWII)

Obs: By HW1O-Pablem 6, any 2 maximal limarly indy sets here The same cardinality. So $d \mathrm{dm} V=$ size of any basis for V.
The usual techniques to find a basis in a spanning set, \& a basis fo by extending a linearly independent set hold in any dimension (see HWII.). The proof uses Zorn's lemur:

Thrum 3: Let V be a rector space ores a field \mathbb{K} with $V \neq\{0\}^{234}$. $\sqrt{25}$
(1) Let S be a li subset of V. Then there exists a basis B fr V with $S \subset B$
(2) Let Γ be a generating set for V (ie a spanning set). Them, there exists a basis B of V with $B \subset \Gamma$.
\$2.2 Direct Sums:
Let V_{1} \& V_{2} be two rector spaces.
If: $V_{1} \oplus V_{2}$ denotes the rector space with undulyeng sit the cartesian product $V_{1} \times V_{2}$ \& the following structure:
$\left.\begin{array}{l}\text { (1) }\left(v_{1}, v_{2}\right)+\left(v_{1}^{\prime}, v_{2}^{\prime}\right)=\left(v_{1}+v_{1}^{\prime}, v_{2}+v_{2}^{\prime}\right) \\ \text { (2) }-\left(v_{1}, v_{2}\right)=\left(-v_{1},-v_{2}\right)\end{array}\right\} \begin{aligned} & \text { same as } 10 \\ & \text { groups }\end{aligned}$
(3) $z\left(v_{1}, z_{2}\right)=\left(z v_{1}, z v_{2}\right)$

This is the same definition as the one for modules / R.

- Limarmops a dinct sums:

If $F_{1}: V_{1} \longrightarrow W_{1}$

$$
f_{2}: v_{2} \longrightarrow w_{2}
$$

are K-limar maps, then we build a new map

$$
f=f_{1} \oplus f_{2} \in H_{m_{K}}\left(V_{1} \oplus V_{2}, w_{1} \oplus w_{2}\right) \text { ria } h_{\left(r_{1}, r_{2}\right)}=\left(f_{1}\left(v_{1}\right), f_{2}\left(r_{2}\right)\right.
$$

If $v_{1}, v_{2}, w_{1}, w_{2}$ are dieppe demensimes $\left(\operatorname{dam} w_{i}=n_{i}, \operatorname{diom} w_{i}=m_{i}\right)$ - $B_{v}=\left(B_{v_{1}} \times 30 \varepsilon\right) \cup\left(\left\{0\left\{\times B_{v_{2}}\right)\right.\right.$ is a basis fo $v_{1} \oplus V_{2}$

$$
B_{w}=\left(B_{w_{1}} \times 30 \varepsilon\right) \cup\left(30 \varepsilon \times B_{w_{2}}\right) \cdots w_{1} \oplus w_{2}
$$

$$
\&[f]_{B_{v} B_{w}}=m_{m_{1}}\left[\begin{array}{c|c}
{\left[f_{1}\right]_{B_{v}, B_{w_{1}}}^{n_{1}}} & 0 \\
\hline 0 & {\left[f_{2}\right]_{B_{v_{2}}, B_{w_{2}}}^{n_{2}}}
\end{array}\right] \in \operatorname{Mat}_{\left(m_{1}+m_{2}\right) \times\left(n_{1}+n_{2}\right)}^{(\mathbb{K})}
$$

Obs: Sane will work tor be modules ores a cam ring with finite rank.
§ 2.3 wal Vector Spaces:
Let V be a \mathbb{K}-rector space.
Def The dual of V, denoted by V^{*}, is defined as:

$$
V^{*}=\operatorname{Him}_{\mathbb{K}}(V, \underset{\hat{L}}{1 K})
$$

Thuren 4: If V is firite-dimensional, then $\operatorname{dim} V^{*}=\operatorname{dim} V$. Pf/ Let $\left\{v_{i}\right\}_{1 \leq i \leq m}$ be a basis fr V. Desire $v_{i}^{*} \in V^{*}$ by

$$
v_{i}^{*}\left(v_{j}\right)=\delta_{i j}=\left\{\begin{array}{cc}
1 & \text { if } i=j \\
0 & \text { if } i 7_{j}
\end{array} \quad\left(v_{i}^{*}\left(\sum_{j=1}^{m} a_{j} v_{j}\right)=a_{i} \in \mathbb{K}\right)\right.
$$

Claim: $B^{*}=\left\{v_{i}^{*}\right\}_{i \leq i \leq m}$ is a basis for V^{*} : (dual basis)
(1) B^{*} spans:

Give $f: V \longrightarrow \mathbb{K}$ límar, it's determined uniquely by its values at B :

$$
f\left(\sum_{i=1}^{m} a_{i} v_{i}\right)=\sum_{i=1}^{m} a_{i}^{m} \underbrace{f\left(v_{i}\right)}_{=b_{i}}
$$

Then: $f=\sum_{i=1}^{m} b_{i} v_{i}^{*}$

$$
\left[f\left(v_{j}\right)=\sum_{i=1}^{m} b_{i} v_{i}^{*}\left(v_{j}\right)=\sum_{i=1}^{m} b_{i} \delta_{i j}=b_{j}\right]
$$

(2) B

$$
\sum_{i=1}^{m} \underbrace{a_{i} v_{i}^{*}=0: V \rightarrow \mathbb{K} \Rightarrow 0=\left(\sum_{i=1}^{m} a_{i} v_{i}^{*}\right)_{\left(v_{j}\right)}=a_{j} v_{j} .}_{\text {scalar in } \mathbb{K}}
$$

1) Claim fails when V is infinite-dimensional. ((1) fails, (2) holds)

Example: Pick $V=\mathbb{K}^{\oplus} \mathbb{N} \quad \mathbb{K}$-V.space with bases $\left\{e_{k}: k \in \mathbb{N}\right\}$ $\exists f: V \longrightarrow \mathbb{K}$ limen mop with $f\left(e_{k}\right)=1 \quad \forall k$.

$$
f\left(\sum_{\substack{i \in \in \mathbb{N} \\ \text { finite }}} a_{i} e_{i}\right)=\sum_{\substack{i \in \mathbb{N} \\ \text { finite }}} a_{i} .
$$

But $\left.\quad f \notin \operatorname{Span} \mid e_{k}^{*}: k \in \mathbb{N}\right)$.
Obs: Similarly if R is a commutative sing, and M is a free R-mid, we candepire $M^{*}=H_{m_{R}}(M, R)$. It turns ret that M^{*} read. not be pee if ak(M) is infinite. (Eg $M=\mathbb{Z}^{\oplus \mathbb{N}}, M^{*}=\prod_{\mathbb{N}} \mathbb{Z}$ note) . If $\operatorname{rk}(M)<\infty, M^{*}$ is free $k\left(M^{k}\right)=a k(M)<\infty$ (Same proof works!) Q: How to dualuze a map?
Lemma: If $f: V \rightarrow W$ is a liner map, then $f^{*}: W^{*} \longrightarrow V^{*}$ defined by $f^{*}(\xi)=\xi$ of: $V \rightarrow W \rightarrow \mathbb{K} \quad \forall \xi \in W^{*}$ is \mathbb{K}-linear Ore precisely: $f^{*}(\xi)(v)=\xi(f(v)) \quad \forall v \in V, \forall \xi \in W^{*}$
Prop: If $_{(H w \|)} \operatorname{dim} V=n, \operatorname{dim} W=m$ then $[f]_{B_{w *} B_{v} *}=[F]_{B_{V} B_{w}}^{T}$.

