Lecture 35: Bilimar foams, tense products
Recall: Last time we define terser products e duals of vector spaces
Def The dual of V, denoted by V^{*}, is defining as: $V^{*}=\operatorname{Hom}_{\mathbb{K}}(V, \mid K)$
Theorem 1: If V is firite-dimensional, then $\operatorname{dim} V^{*}=\operatorname{dim} V .\left(\begin{array}{c}B_{B} m \\ B_{\text {sis }}\end{array} B^{*}\right.$ dual basis $)$ Q: How to dualize a map?
Lemma: If $G: V \rightarrow W$ is a lexer map, then $f^{*}: W^{*} \longrightarrow V^{*}$ defined by $f^{*}(\xi)=\xi \circ f: V \rightarrow W \rightarrow \mathbb{K} \quad \forall \xi \in W^{*}$ is \mathbb{K}-linear More puccisely: $f^{*}(\xi)(r)=\xi(f(r)) \quad \forall v \in V, \forall \xi \in W^{*}$

$\frac{\text { Theorem 2 }}{\text { (Aw II) }} \underset{v}{V} \stackrel{\varphi}{\longmapsto}\left(V^{*}\right)^{*} \quad$ lima $\quad \varphi(v):(f \longmapsto f(v)) \forall f \in V^{*} ;$ sung $\Leftrightarrow \operatorname{dim} V<\infty$
si. Bilinear Maps and Tenser Products:
Let V_{1}, V_{2}, W be 3 vector spaces sen \mathbb{K}
Def: A bilinear map $f: V_{1} \times V_{2} \longrightarrow W$ is a set map which is limen m each ordinate, ie:

$$
\begin{aligned}
-\forall v_{1} \in V_{1}: \quad V_{2} & \longrightarrow W \\
w & \longmapsto H_{m_{\mathbb{K}}}\left(V_{2}, w\right) \text { lima! } \\
. \forall v_{2} \in V_{2}: \quad V & \longrightarrow W, w) \\
w & \longmapsto H_{m_{\mathbb{K}}}\left(V_{1}, w\right) \text { limen! }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Obs: } f\left(a_{1} v_{1}+b_{1} v_{1}^{\prime}, a_{2} v_{2}+b_{2} v_{2}^{\prime}\right)=a_{1} f\left(v_{1}, a_{2} v_{2}+b_{2} v_{2}^{\prime}\right)+b_{1} f_{\left(v_{1}^{\prime}, a_{2} v_{2}+b_{2} v_{2}^{\prime}\right)}=a_{1} a_{2} f\left(v_{1}, v_{2}\right)+a_{1} b_{2} f\left(v_{1}, v_{2}^{\prime}\right)+a_{2}^{\prime s} \text { word } \\
& =a_{2} b_{1} f_{\left(v_{1}^{\prime}, v_{2}\right)+a_{2} b_{2} f\left(v_{1}^{\prime}, v_{2}^{\prime}\right) .}
\end{aligned}
$$

$$
\text { Imam in } 2^{\prime \prime} \text { cord }
$$

Conclusion f is completely determine by the values in $f\left(v, v_{2}\right)$ with $v_{1} \in B_{v_{1}}=$ basis $f o V_{1}$

$$
v_{2} \in B_{v_{2}}=-v_{2}
$$

If V_{i} \& V_{2} are finite dimensimal \& $W=\mathbb{R}$, we will be able to build a mature encoding the bilinear from G.
Ex: $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \longrightarrow \mathbb{R}$ is defined as :

$$
f(x, y)=x^{\top}\left[\begin{array}{c}
f\left(e_{i}, e_{j}\right) \\
n \times m
\end{array}\right]_{i, j} y
$$

Def: The Tens product $V_{1} \otimes_{\mathbb{K}} V_{2}$ is a rector space Together with a bilinear map $V_{1} \times V_{2} \xrightarrow{\varphi} V_{1} \otimes_{\mathbb{K}} V_{2}$

$$
\left(v_{1}, v_{2}\right) \longmapsto v_{1} \otimes v_{2} \text { indewimpsable tensor }
$$

satisfying the following universal property: $F \backsim$ any recto sp . W ser K and any bilinear map $f: V, \times V_{2} \longrightarrow W$, there exists a unique $\tilde{f}: V_{1} \otimes V_{2} \longrightarrow W$ linear map making the following diagram commute:
(k)

Idea: Build a space so that \tilde{f} is times.

Example : $V \otimes \mathbb{K} \cong V \quad v \otimes 1 \longleftrightarrow v . \quad \varphi(v, 1)=v \otimes 1=v$ IN $\tilde{f}(v)=f(v, 1)$

Construction: $V_{1} \otimes V_{2}$ is a rector space spanned by the set la basis!) $B=\left\{\left(v_{1}, v_{2}\right): v_{1} \in V_{1}, v_{2} \in V_{2}\right\} \&$ quotiented by a subspace H

$$
\text { - } V_{1} \underset{\mathbb{K}}{\mathbb{K} V_{2}}=\frac{\bigoplus_{v_{1} \in v_{1}, v_{2} \in V_{2}} \mathbb{K}\left(v_{1}, v_{2}\right)}{H}
$$

$H=v \cdot s p$ generated by:
(1) $\left(z_{1} v_{1}+z_{1}^{\prime} v_{1}^{\prime}, v_{2}\right)-z_{1}\left(v_{1}, v_{2}\right)-z_{1}^{\prime}\left(v_{1}^{\prime}, v_{2}\right)$
(2) $\left(v_{1}, z_{2} v_{2}+z_{2}^{\prime} v_{2}^{\prime}\right)-z_{2}\left(v_{1}, v_{2}\right)-z_{2}^{\prime}\left(v_{1}, v_{2}\right)$

Notation: $\overline{\left(v_{1}, v_{2}\right)}=v_{1} \otimes v_{2}$ in $v_{1} \otimes v_{2}$
So in the quotient: $\left(z_{1} v_{1}+z_{1}^{\prime} v_{1}^{\prime}\right) \otimes v_{2}=z_{1}\left(v_{1} \otimes v_{2}\right)+z_{1}^{\prime}\left(v_{1}^{\prime} \otimes v_{2}\right)$.

$$
\left(v_{1} \otimes\left(z_{2} v_{2}+z_{2}^{\prime} v_{2}^{\prime}\right)=z_{2}\left(v_{1} \otimes v_{2}\right)+z_{2}^{\prime}\left(v_{1} \otimes v_{2}^{\prime}\right.\right.
$$

Set $\varphi: V_{1} \times V_{2} \xrightarrow{\pi} V_{1} \otimes V_{2}$ as the natural profectim

$$
\left(v_{1}, v_{2}\right) \longrightarrow \overline{\left(v_{1}, v_{2}\right)}=v_{1} \otimes v_{2}
$$

φ is bilimar by (1) $\&$ (2).
(11) $\varphi\left(z_{1}, v_{1}+z_{1}^{\prime}, v_{1}^{\prime}, v_{2}\right) \stackrel{?}{=} z_{1} \varphi\left(v_{1}, v_{2}\right)+z_{1}^{\prime} \varphi\left(v_{1}^{\prime}, v_{2}\right)$ this is (1)!
(2') $\varphi\left(v_{1}, z_{2} v_{2}+z_{2}^{\prime} v_{2}^{\prime}\right) \stackrel{?}{=} z_{2} \varphi\left(v_{1}, v_{2}\right)+z_{2}^{\prime} \varphi\left(v_{1}, v_{2}^{\prime}\right)$
(1) The map is bilinear because we defined $V_{1} \otimes_{I K} V_{2}$ as a quotient of rector spaces. (quotient of \mathbb{K}-modules)

- Q: How to define \tilde{F} ?

Use $\tilde{f}\left(v_{1} \otimes v_{2}\right)=\tilde{f}\left(\varphi\left(v_{1}, v_{2}\right)\right)=f\left(v_{1}, v_{2}\right)$

- $\left\{v, \otimes v_{2}\right\}$ span, so \tilde{f} will be usiquee by construction.

We car use the universal property of $(\oplus$ ito get a! linear $\operatorname{map} g: \nsubseteq \mathbb{v}_{v_{1} \in v_{1}} K_{(}\left(v_{1}, v_{2}\right) \longrightarrow W$ with $g\left(v_{1}, v_{2}\right)=f_{\left(v, v_{2}\right)}$ + extend linearly

$$
\left(\left\{\left(v_{1}, v_{2}\right)\right\}\right. \text { is abasis for this vector space) }
$$

Noes we want to cluck $\left.g\right|_{H}=0$.
(1') $g\left(\left(z_{1} v_{1}+z_{1}^{\prime} v_{1}^{\prime}, v_{2}\right)\right)=f\left(\left(z_{1} v_{1}+z_{1}^{\prime} v_{1}^{\prime}, v_{2}\right)\right)$

$$
\overline{=} z_{1} f\left(v_{1}, v_{2}\right)+z^{\prime}, f\left(v_{1}^{\prime}, v_{2}\right)=z_{1} g\left(v_{1}, v_{2}\right)+z_{1}^{\prime} g\left(v_{1}^{\prime}, v_{2}\right)
$$

r bilinear
so $\delta\left(\left(z_{1} v_{1}+z_{1}^{\prime} v_{2}^{\prime}, v_{2}\right)-z_{1}\left(v_{1}, v_{2}\right)-z_{1}^{\prime}\left(v_{1}^{\prime}, v_{2}\right)\right)=0$
(2') Similarly $f\left(\left(v_{1}, z_{2} v_{2}+z_{2}^{\prime} v_{2}\right)-z_{2}\left(v_{1}, v_{2}\right)-z_{2}^{\prime}\left(v_{1}, v_{2}^{\prime}\right)\right)=0$

Conclusion: $H \subseteq$ ker g so g gives a unique liver mop

$$
\tilde{F}: \quad V_{1} \otimes V_{2}=\frac{\bigoplus_{v_{i} \in V_{i}} K K\left(v_{1}, v_{2}\right)}{H} \longrightarrow W
$$

- The diagram (*) commutes by construction.

