Lecture 36: Tenser products, How tenser adjintivess
Recall :The Tense product $V_{1} \otimes_{1 K} V_{2}$ is a rector space Together with a bilinear map $V_{1} \times V_{2} \xrightarrow{\varphi} V_{1} \otimes_{\mathbb{K}} V_{2}$

\[

\]

satisfying the following universal property: $F \curvearrowright$ any rector $s p$. W ser IK and any bilinear map $f: V, \times V_{2} \longrightarrow W$, there exists a unique $\tilde{F}: V_{1} \otimes V_{2} \longrightarrow W$ linear map making the following diagram commute:

Defined $\left.V_{1} \not \otimes_{K} V_{2}=\frac{\bigoplus_{\substack{v_{1} \in V_{1} \\ v_{2} \in V_{2}}} \mathbb{K}\left(v_{1}, v_{2}\right)<}{H} \begin{array}{l}\text { rector space with basis } \\ B=3\left(v_{1}, v_{2}\right): v_{1} \in V_{1} \\ v_{2} \in V_{2}\end{array}\right\}$
\& $H=$ relatims we expect on $V_{1} \otimes_{\mathbb{K}} V_{2}=$ subspaces generated by (1) \& (2) for all $v_{1}, v^{\prime}, \in V_{1}, r_{2}, r_{2}^{\prime} \in V_{2} \& a_{1}, b_{1}, a_{2}, b_{2} \in \mathbb{K}$:
(1) $\left(a_{1}, v_{1}+b_{1} v_{1}^{\prime}, v_{2}\right)-a_{1}\left(v_{1}, v_{2}\right)-b_{1}\left(v_{1}^{\prime}, v_{2}\right)$
(m $\left(a_{1} v_{1}+b_{1} v_{1}^{\prime}\right) \otimes v_{2}=a_{1}\left(v_{1} \otimes v_{2}\right)+b_{1}\left(v_{1}^{\prime} \otimes v_{2}\right)$ in $v_{1} \otimes v_{\mathbb{K}}$
(2) $\left(v_{1}, a_{2} v_{2}+b_{2} v_{2}^{\prime}\right)-a_{2}\left(v_{1}, v_{2}\right)-b_{2}\left(v_{1}, v_{2}^{\prime}\right)$
$\left(m \quad v_{1} \otimes\left(a_{2} v_{2}+b_{2} v_{2}^{\prime}\right)=a_{2}\left(v_{1} \otimes v_{2}\right)+b_{2}\left(v_{1} \otimes v_{2}^{\prime}\right)\right.$ in $V_{1} \otimes v_{\mathbb{K}}$
\tilde{f} is defined as $\tilde{f}\left(v_{1} \otimes v_{2}\right)=f\left(v_{1}, v_{2}\right)$

- We check it is well-defined by selling $g: \bigoplus_{\substack{v_{1} \in v_{1} \\ v_{2} \in v_{e}}} \mathbb{K}\left(r_{1}, v_{2}\right) \longrightarrow W$
to be the unique \mathbb{K}-leman map with $g(\underbrace{v_{1}, v_{2}}))=f\left(v_{1}, v_{2}\right) \quad \&^{136(2)}$ \rightarrow thy from a basis.
using the fact that F is bilinear to check $\delta_{\left.\right|_{H}}=0 \quad(g(0)=S(2)=0)$ So δ determines a \mathbb{K}-linear map in $V_{1} \otimes V_{2}=\underset{\substack{v_{2} \in \in V_{2}^{\prime}}}{\oplus \mid K\left(v, v_{2}\right)}$
a this is precisely \tilde{f}.

Proposition: If $F_{1}: V_{1} \longrightarrow W_{1} \& G_{2}: V_{2} \longrightarrow W_{2}$ are \mathbb{K}-limen, then

$$
\left(f_{1}, f_{2}\right): v_{1} \times V_{2} \longrightarrow w_{1} \times w_{2}
$$

bilinear' - $W_{1} \otimes W_{2}$
m get! $h_{1} \otimes r_{2}: V_{1} \otimes V_{2} \longrightarrow W_{1} \otimes W_{2}$ linear.
$\$ 2$ Bases in $V_{1} \otimes V_{2}$:
Lemma: $\quad \operatorname{dim}_{\mathbb{K}}\left(V, \otimes V_{2}\right)=\operatorname{dim}_{\mathbb{K}} V_{1} \cdot \operatorname{dim}_{k} V_{2} \quad$ (product of corderalities)
Bf/ We write down a basis for $V_{1} \otimes V_{2}$ as a product of bases.
If $B_{v_{1}}=\left\{v_{i}^{(1)}: i \in I_{1}\right\}$ is a basis for V_{1} \&

$$
\left.B_{v_{2}}=3 v_{i}^{(2)}: i \in I_{2}\right\} \quad v_{2} \text {, then }
$$

Claim $B=\left\{\begin{array}{lll}v_{i}^{(1)} \otimes v_{j}^{(2)} & i \in I_{1} \\ j \in I_{2}\end{array}\right\}$ is abasis fo $V_{1} \otimes V_{2}$

- B spans $V_{1} \otimes V_{2}$:

It's enough to write the spanning set if indecmprable tensors as (finite) linear combinaterns of elements $m B$.
If $v_{1} \in V_{1}, v_{2} \in V_{2}$ then:

$$
v_{1}=\sum_{i \in I_{1}} a_{i} v_{i}^{(1)} \quad \& \quad v_{2}=\sum_{j \in I_{2}} a_{j} v_{j}^{(2)} \quad \text { with } a_{i}=0
$$

for all but finitely many $i \in I_{1}, j \in I_{2}$.

Then $v_{1} \otimes v_{2}=\varphi\left(\sum_{\substack{i \in I_{1} \\ \text { hamite }}} a_{i} v_{i}^{(1)}, \sum_{\substack{j \in I_{2} \\ \text { finite }}} b_{j} v_{j}^{(2)}\right)$

$$
\begin{aligned}
& \overline{\bar{j}} \\
& \operatorname{Ram}(1)
\end{aligned} \sum_{\substack{i \in I_{1} \\
\text { finite }}} a_{i} \varphi\left(v_{i}^{(1)}, \sum_{j \in I_{2}} b_{j} v_{j}^{(z)}\right)
$$

$$
\overline{\bar{A}} \sum_{\substack{i \in I_{1}^{1} \\ j=I_{2} \\ \operatorname{rman}^{2} G}} \underbrace{a_{i} b_{j}}_{\in \mathbb{R}} \underbrace{\varphi\left(v_{i}^{(1)}, v_{j}^{(2)}\right)}_{=v_{i}^{(1)} \otimes v_{j}^{(2)}} \quad \text { but finitely many } a_{\substack{i \in I_{1} \\ j \in I_{2}^{\prime}}}^{\left(a_{j}\right)}=0 \text { foal. }
$$

- B is li:

$$
\sum_{\substack{i \in I_{1} \\ 1 I_{2} \\ h_{i n}\left(c_{i}\right)}} v_{i}^{(1)} \otimes v_{j}^{(2)}=0 \in V_{1} \otimes V_{2} \quad \text { Wat to show } c_{i j}=0
$$

Use def to reunite it as $\sum_{j \in I_{2}}\left(\sum_{i \in I_{1}} c_{i j} v_{i}^{(1)}\right) \otimes v_{j}^{(2)}=0$. $(k-\alpha) \operatorname{simite}_{\in V_{1}}^{\text {limiter }^{N}} \quad \underbrace{}_{2}$
Pick $l \in I_{2}$. Well show $c_{i l}=0 \quad \forall_{i}$
Since $B_{r_{2}}$ is a basis fo $V_{C_{2}}: \exists \Psi: V_{2} \rightarrow K$ linear with

$$
\psi_{\left(v_{j}^{(l)}\right)}=\delta_{j, l} \quad \Psi=\left(v_{l}^{(2)}\right)^{*} \in V_{2}^{*}
$$

By Propritim \exists id $v_{1} \otimes \Psi: V_{1} \otimes V_{2} \rightarrow \underbrace{}_{1} \otimes V_{k}$ lennon with $\left(i v_{1} \otimes \otimes\right)\left(r_{1} \otimes v_{2}\right)=v_{1} \otimes \Psi\left(v_{2}\right)$.

$$
\underbrace{1 K}_{=v_{1}}
$$

Apply id $v_{1} \otimes \Psi \bar{\tau}_{0}\left(d_{*}\right)$. Then:

$$
\begin{aligned}
& \sum_{n=l}^{\bar{\jmath}} \sum_{i \in I_{1}} c_{i l} \sigma_{i}^{(1)} \otimes 1 \\
& \text { senvises } \\
& \Rightarrow \sum_{\hat{N}}^{0}=\sum_{i \in I_{1}} c_{i l} V_{i}^{(1)} \quad \Rightarrow \quad C_{i l}=0 \quad \forall i
\end{aligned}
$$

Remark: Assume $\operatorname{dim} V_{i}=n_{i}<\infty \& \operatorname{dim} W_{i}=m_{i}<\infty$.
Assume $G_{1}: V_{1} \longrightarrow W_{1}$ linear are identified with matrias

$$
f_{2}: V_{2} \longrightarrow W_{2}
$$

$X_{1} \in \operatorname{Mat}_{m_{1} \times n_{1}}(\mathbb{K}) \& X_{2} \in \operatorname{Mat}_{m_{2} \times n_{2}}(\mathbb{K})$. Then: $f_{1} \otimes f_{2}$ gits identified with a matrix $x_{1} \otimes X_{2} \in \operatorname{Mat}_{\left(m_{1} \cdot m_{2}\right) \times\left(u_{1} \cdot u_{2}\right)}^{(\mathbb{K}) \text {. }}$

Mra pucisely, if $X_{1}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n_{1}} \\ \vdots & & \\ a_{m_{1} 1} & \cdots & a_{m_{1} n_{1}}\end{array}\right] \& X_{2}=\left[\begin{array}{ccc}b_{11} & \cdots & b_{1 n_{2}} \\ \vdots & & \\ b_{m_{1} 1} & \cdots & b_{m_{2} n_{2}}\end{array}\right]$,
thin $X_{1} \otimes X_{2}=\left[\begin{array}{ccc}a_{11} X_{2} & \cdots & a_{1 n_{1}} X_{2} \\ \vdots & & \\ m_{2} \times n_{2} \text { matrix: } & a_{m_{1} X_{2}} & \cdots \\ a_{m 1 n}, X_{2}\end{array}\right]$

$$
\begin{aligned}
& B_{v_{1}}=\left\{v_{i}^{(1)} \quad i=1, \ldots, n_{1}\right\} \\
& B_{v_{2}}=\left\{v_{i}^{(2)} \quad i=1, \ldots, n_{2}\right\} \\
& \left.B_{w_{1}}=3 w_{i}^{(1)} \quad i=1, \ldots, n_{1}\right\} \\
& B_{w_{2}}=\left\{w_{i}^{(2)} \quad i=1, \ldots, m_{2}\right\}
\end{aligned}
$$

Here we use $B_{v_{1} \otimes v_{2}}={ }^{"} B_{v_{1}} \times B_{v_{2}}=\bigcup_{i=1}^{n_{1}}\left\langle v_{i}^{(1)} \otimes v_{j}^{(2)}: j=1, \ldots, n_{2}\right\}$

$$
\left.B_{w_{1} \otimes w_{2}}={ }^{\prime \prime} B_{w_{1}} \times B_{w_{2}}^{\prime \prime}=\bigcup_{i=1}^{m_{1}} 3 w_{i}^{(1)} \otimes w_{j}^{(2)}: j=1,-i m_{2}\right\}
$$

(as in the Lerina)
§3. Hom-Tenser adjrintuess:
Prop: There is a natural map $V^{*} \otimes W \xrightarrow{\Phi} \operatorname{Hom}(V, W)$

Mouorer, Φ is an ismurphism if V is fmite-dimensinal Ingeneral: Φ is always injectire.
Proof Sifine

$$
\varphi: V^{*} \times W
$$

\qquad $\operatorname{Hom}(V, W)$

$$
(\xi, w) \longmapsto\{v \longmapsto \xi(v) w\}
$$

- Easycheck: φ is biliwear. Hence, it yields a unique liwearmp,

$$
\phi: V^{*} \otimes W \longrightarrow H_{m}(V, w)
$$

with $\phi(\xi \otimes \omega)=\varphi(\xi, \omega)$.

- φ is imjective: Let $\alpha \in V^{*} \otimes W$ be such that $\phi(\alpha)=0$ Write $\alpha=\sum_{j=1}^{N} \xi_{j} \otimes \omega_{j} \quad$ (absorse scalars into ξ_{j})
We cam assume w_{1}, \ldots, w_{N} are limarly indeperdent. Otherbise, use the defredency relation \bar{T} uduce the nember of w 's.
(Eg rusite $\omega_{N}=\sum_{j=1}^{N-1} a_{j} \omega_{N j} \leadsto>\sum_{j=1}^{N-1} \xi_{j} \otimes \omega_{j}+\sum_{j=1}^{N-1} \xi_{N} \otimes a_{j} \omega_{j}$

$$
\begin{aligned}
& =\sum_{j=1}^{N-1} \xi_{j} \otimes \omega_{j}+\sum_{j=1}^{N-1}\left(a_{j} \xi_{N} \otimes \omega_{j}\right) \\
& =\sum_{j=1}^{N}(\underbrace{\xi_{j}+a_{j} \xi_{N}}_{\operatorname{mow} \xi_{j}^{\prime}}) \otimes \omega_{j})
\end{aligned}
$$

Then: $\forall v \in V \sum_{j=1}^{N} \xi_{j}(v) w_{j}=\phi(\alpha)(v)=0$

$$
\begin{aligned}
& \Rightarrow \xi_{j}(v)=0 \quad \forall j=1 \cdots N \\
& 3 w_{1}, \cdot w_{N}, l_{i} \\
& \text { But } \xi_{j}(v)=0 \quad \forall v \in V \quad \Longrightarrow \xi_{j}=0
\end{aligned}
$$

Cuclude: $\alpha=\sum_{j=1}^{N} 0 \otimes \omega_{j}=0$.

- Claim: If $\operatorname{dim} V=n<\infty$, then ϕ is suyectire

BF/ Let $B_{V}=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for V. Given $f \in H_{m_{n}}(V, w)$ lit $\omega_{i}=f\left(v_{i}\right) \quad i=1, \ldots n$.
Then $\alpha=\sum_{i=1}^{m} v_{i}^{*} \otimes w_{i} \in V^{*} \otimes W$ satisfies $\phi(\alpha)=f$.
because $\sum_{i=1}^{m} \phi\left(v_{i}^{*} \otimes w_{i}\right)_{\left(v_{j}\right)}=\sum_{i=1}^{m} \frac{v_{i}^{*}\left(v_{j}\right)}{\delta_{i j}} \cdot w_{i}=w_{j}$
So $\phi(\alpha)$ \& f agree in B_{v}, so they are the same function.
In particular, when $W=V$ \& $\operatorname{drm} V<\infty$, we use this to write a carmical terser in $V^{*} \otimes V$, that is bases independent (HW12)

