Lecture 37: Taser, Exterior \& Symmetric Algebras
Given V_{1}, \ldots, V_{n} \& $W \mathbb{K}$-vector spaces, we can define multilimear maps $f: V, x \cdots \times V_{n} \longrightarrow W$ as linear when restricted T_{0} each cord. $m>$ We constrict a tensor 1 worluct $V_{1} \otimes_{\mathbb{K}} V_{2} \otimes_{\mathbb{K}} \cdots \otimes_{\mathbb{K}} V_{n}$:

- inductively: $V_{1} \otimes_{\mathbb{K}}\left(V_{2} \otimes \cdots \otimes_{\mathbb{K}} V_{n}\right) \quad(n \geqslant 2)$
r
- Via universal popery: $V_{1} \otimes_{\mathbb{k}} V_{2} \otimes_{\mathbb{k}} \cdots \otimes_{k} V_{n}$ is a \mathbb{k}-rectos space
together with a multilinear map $\varphi: V_{1} x \ldots x V_{n} \longrightarrow \hat{Q}_{i=1}^{n} V_{i}$

$$
\left(v_{1}, \ldots, v_{n}\right) \longmapsto v_{1} \otimes \ldots \otimes v_{n}
$$

satishyng: Whenever we are given a multilimear mop $f: V_{1} x \cdots-V_{n} \rightarrow W$ we can find a unique linear map $\bar{F}: \bigotimes_{i=1}^{n} V_{i} \longrightarrow W$ making the diagram
 commute.
. Basis fo $V_{1} \otimes \cdots V_{n}=\left\{v_{i_{1}}^{(1)} \otimes \cdots v_{i n}^{(n)}: v_{i_{1}}^{(1)} \in B_{1}, \ldots, v_{i n}^{(n)} \in B_{n}\right\}$ \& B_{i} is a basis for V_{i} fri =1, \ldots, n.
si. Truss Algebra:
Pick any \mathbb{K}-rector space V Inductively we define

$$
T^{k}(V)=V^{\otimes k}=\underbrace{V \otimes \cdots-\otimes V}_{k \text { terms }} \text { fo all } k \geqslant 2
$$

m Collect all these tensors into 1 rector space via © .

$$
T^{\circ}(V)=\oplus_{n \geqslant 0} T^{n}(V) \quad\left(T^{0}(V)=\mathbb{K}\right)
$$

Prop: $T^{\circ}(V)$ is a \mathbb{K}-algebra $=\mathbb{K}$-vector space + ring structure Proof: Enough T_{0} define the multiplication between $T^{n}(v) \& T^{m}(V)$

$$
T^{n}(v) \times T^{m}(v) \longrightarrow T^{n+m}(v) \text { bilinear }
$$

. We define it on indecomprable tensors \& extend \mathbb{K}-bilimarly.

$$
\left(v, \otimes \cdots \otimes v_{n}\right) \cdot\left(w_{1} \otimes \cdots \otimes w_{m}\right)=v_{1} \otimes \cdots \otimes v_{n} \otimes w_{1} \otimes \ldots \otimes w_{n}
$$

- Well-difined? (1) We can work with bases \& extend \mathbb{K}-linearly

Example: $V=\mathbb{K}^{n}$, then $T^{m}(V) \leftrightarrow$ hanogencores degree m polynomials in n non-commuting variables.

- variables $x_{i} \longleftrightarrow e_{i} \quad$ (standard basis for \mathbb{K}^{n})
$E_{g}, \quad\left(\sum_{j} a_{i} e_{i}\right) \otimes\left(\sum_{j} b_{j} e_{j}\right)=\sum_{i, j} a_{i} b_{j}\left(e_{i} \otimes e_{j}\right)$ $x_{i} \cdot x_{j}$ monaural
$\leadsto T^{2}\left(\mathbb{K}^{n}\right)=$ honog degree polys in n nun-cummitioy variables.
\$2. Symmetric a Exterior Algebras
Next, we define thur quotients of $T^{k}(V)$ that allow as T_{0} swap entries on tensors, with/ without a sign. We asserme chalk $\neq 2$

Definition:
 of V)
Obs 1: A Typical summand of am element in $S^{k}(V)$ is written as $v_{1} \cdots v_{k}$

- $S^{k}\left(\mathbb{K}^{n}\right)=$ deg k homogeneous polynomials in n comuitieng rainables!
Eg: $\quad S^{2}\left(\mathbb{K}^{n}\right) \Rightarrow\left(\sum_{i=1}^{n} a_{i} e_{i}\right) \otimes\left(\sum_{j=1}^{n} b_{j} e_{j}\right)=\sum_{i, j=1}^{n} a_{i} b_{j} e_{i} \otimes e_{j}$

$$
\begin{aligned}
& \bar{\downarrow} \sum_{i<j}\left(a_{i} b_{j}+a_{j} b_{i}\right) e_{i} e_{j}+\sum_{i=1}^{n} a_{i} b_{i} e_{i} e_{i} \\
& e_{i} \otimes e_{j}=e_{j} \otimes e_{i} \text { in } S^{2}\left(\mathbb{K}^{n}\right) \\
& \Leftrightarrow \sum_{i=j}\left(a_{i} b_{j}+a_{j} b_{i}\right) x_{i} x_{j}+\sum_{i=1}^{n} a_{i} b_{i} x_{i}^{2} .
\end{aligned}
$$

Lemma: $v_{1} \otimes \ldots\left(\otimes v_{k}-s g(\sigma) v_{\sigma_{(1)}} \otimes \cdots v_{\sigma_{(k)}}=0 \operatorname{in} \lambda_{v}^{k}\right.$ fr all $\sigma \in S_{k}, v_{1} \ldots, v_{n} \in V$
PF/ By induction in $\operatorname{lin}(\sigma)$ (write σ as a product of simple transpositions)
Base care $\ln (\sigma)=1:$ is the definition of $\Lambda^{k}(V)$.

Obs 2: A Typical summand if an ilement in $\Lambda^{k}(V)$ is witten as $v, \wedge \ldots \wedge v_{k}$ (rodu matters!)

- $v, \wedge \ldots \wedge v_{k}=0$ if $v_{i}=v_{j}$ fos sime ifj (bylemuma)
$\operatorname{sign}(i j)=-1,20$ flipping sigus inturduces a negatiue ripn
- $v_{\sigma_{(1)}} \wedge \cdots \wedge v_{\sigma_{(k)}}=\operatorname{sig}(\sigma)\left(v, \wedge \ldots \wedge v_{k}\right) \quad \forall \sigma \in S_{k}$.

Prop: Bases fos $S^{k}(v) \& \Lambda^{k}(v)$:
If $\left\{v_{i}: i \in I\right\}$ is a basis fo V \& I is totally ordued, then
(1) $\left\{v_{i_{1}}^{r_{i}} \cdots v_{i s}^{r_{i s}}: \begin{array}{r}r_{i}+\cdots+r_{i s}=k \\ s \geqslant 1, r_{i j} \geqslant 1\end{array}\right\}$ is abasisfor $S^{k}(v)$
(2) $\left\{v_{i} \wedge \ldots \wedge v_{i k} \quad i_{1} i_{2}<\ldots<i_{k} m I\right\}$ is a basis fon $\Lambda^{k}(v)$

Obs: Total rder if I is infinite mpuines the axisu of choice.
Corollary: Assume $\operatorname{dim} V=n$. Then,
(1)dim $S^{k} V=\binom{n+k-1}{k} \quad$ (\# mmomials it dagk in nvariables)
(2) $\operatorname{dim}\left(\Lambda^{k} v\right)=\binom{n}{k} \quad(=0$ if $k>n)$

We can difine Syrmintuic and extecir algebrios:

$$
\begin{array}{ll}
S_{y m}(V)=S^{0}(V)=\bigoplus_{n \geqslant 0} S^{n}(V) & \left(S^{0}(V)=\mathbb{K}, S^{\prime}(V)=V\right) \\
\Lambda^{0}(V)=\bigoplus_{n \geqslant 0} \Lambda^{n}(V) & \left(\Lambda^{0}(V)=\mathbb{K}, \Lambda^{\prime}(V)=V\right)
\end{array}
$$

