Lecture 38: Exterio \& Symmetric Algebras
Recall, Girm abecter space V sus a pield \mathbb{K}.

$$
\begin{aligned}
& T^{n}(v)=V^{\otimes_{n}} \\
& S^{n}(V)=V^{\otimes n} \\
& \Lambda^{n}(v)=\frac{\left.V^{\otimes} \otimes n<v_{1} \otimes \cdot \otimes v_{n}-v_{1} \otimes \cdot \otimes v_{i+1} \otimes v_{i} \otimes \cdot \otimes v_{n}: \begin{array}{l}
i \in i \leq n-1 \\
\left\langle v_{j} \in V\right.
\end{array}\right\rangle}{\left\langle v_{1} \otimes \cdot \otimes v_{n}+v_{i} \otimes \cdot \otimes v_{i+1} \otimes v_{i} \otimes \cdot \otimes v_{n}: \begin{array}{l}
i \in i \leq n-1 \\
v_{j} \in V
\end{array}\right\rangle}
\end{aligned}
$$

N.tatim fos $s_{(v)}^{n}: \quad v_{1} \cdots v_{n}=\overline{v_{1} \otimes \cdots \otimes v_{n}}$
$\Lambda^{n}(v): \quad v_{1} \wedge \cdots \wedge v_{n}=\overline{v_{1} \otimes \cdots \otimes v_{n}}$
S1. Taser, extcrior \& symuntric absebras:
We can difine Tensor, Symmetuic and extecir algebras:

$$
\begin{array}{ll}
\text { - } T^{0}(V)=\bigoplus_{n \geqslant 0} T^{n}(V) \quad\left(T^{0}(V)=\mathbb{K}, T^{\prime}(V)=V\right) \\
\text { - } S_{y m} \cdot(V)=S^{0}(V)=\bigoplus_{n \geqslant 0} S^{n}(V) \quad\left(S^{0}(V)=\mathbb{K}, S^{\prime}(V)=V\right) \\
\text { - } \Lambda^{0}(V)=\bigoplus_{n \geqslant 0} \Lambda^{n}(V)^{0} \quad & \left(\Lambda^{0}(V)=\mathbb{K}, \Lambda^{\prime}(V)=V\right)
\end{array}
$$

Multiplicatim m $T^{\circ}(v): \quad 1 T^{n}(v) \times T^{m}(v) \longrightarrow T^{m+n}(v)$
by extunding \mathbb{K} - biluzoaly $\left(v, \otimes, \cdot \otimes v_{n}\right) \cdot\left(w_{1} \otimes, \otimes w_{m}\right)=v_{1} \otimes \otimes \otimes v_{n} \otimes w_{1} \otimes \otimes \otimes w_{m}$
Prop: $S^{\circ}(V)$ \& $\Lambda^{*}(V)$ ane \mathbb{K}-algebras.
SF/ Follow the same idea as in $T^{\circ}(V)$. Define mulciplicatices

$$
\begin{aligned}
& \Phi: S^{n}(V) \times S^{m}(V) \longrightarrow S^{n+m}(V) \\
& v_{1} \ldots v_{n} \times w, \ldots \ldots w_{m} \longmapsto v_{1} \ldots v_{n} w, \ldots w_{m} \\
& \Psi: \Lambda^{n}(V) \times \Lambda^{m}(V) \longrightarrow \Lambda^{n+m}(V) \\
& v_{1} \Lambda \ldots \wedge v_{n} \times v_{1} \Lambda \ldots \wedge w_{m} \longmapsto v_{1} \Lambda \cdots \wedge v_{n} \wedge w, \Lambda \ldots \Lambda w_{m}
\end{aligned}
$$

Mre puecisely: $\Phi\left(\bar{u}, \overline{u^{\prime}}\right)=\overline{\varphi\left(u, u^{\prime}\right)}$ in $S^{n+m}(v)$

$$
\psi\left(\bar{u}, \overline{u^{\prime}}\right)=\overline{\varphi\left(u, u^{\prime}\right)} \text { in } \Lambda^{n+m}(v)
$$

To show it's well-defrned, weed to show the relations depriing $S^{k}(V)$ \& $\Lambda^{k}(V)$ are puseesed (Exercise) - multiplication is assoriatire, distributise by consturction ξz Mrem $T^{*}(v), S^{0}(v), \Lambda^{*}(v):$

Abre descuption: $S^{n}(V) \& \Lambda^{n}(V)$ are quotients of $T^{n}(V)$. Alternative appowach: in char $(\mathbb{K})=0$ we can riew $S^{n}(V) \&$ $A^{n}(V)$ as subspaces of $T^{n}(V)$. \& the multiplication reskects the stuctere.

- Defince an action of $S_{n} m T^{n}(V)$ ria

$$
\sigma \cdot\left(v_{1} \otimes \cdots \otimes v_{n}\right)=v_{\sigma_{(1)}} \otimes \cdots\left(\otimes v_{\sigma(n)}\right.
$$

(Need to show it exterds hum indec tensirs to $T^{n}(V)$, can do this ria unier profetty $\sigma: \underbrace{V \times \ldots \times V}_{n \text { temes }} \longrightarrow T^{n}(V)$ multidimar $\leadsto \exists!\bar{\sigma} \cdot: T^{n}(v) \rightarrow T^{n}(v)$ with $\left.\sigma\left(v_{1}, \ldots, v_{n}\right)=\bar{\sigma}\left(v, \otimes \otimes v_{n}\right)\right)$

- Define 2 operators $S, A: T^{n} V \longrightarrow T^{n} V$

$$
\begin{aligned}
& S(\xi)=\frac{1}{n!} \sum_{\sigma \in S_{n}} \sigma(\xi) \\
& A(\xi)=\frac{1}{n!} \sum_{\sigma \in S_{n}} \operatorname{sim}(\sigma) \sigma(\xi)
\end{aligned}
$$

Prop:(u) $S^{2}=S, \quad A^{2}=A$
(2) $\operatorname{Ker}(S)=\left\langle v_{1} \otimes \cdots \otimes v_{n}-v_{1} \otimes \cdots \otimes v_{i+1} \otimes v_{i} \otimes \otimes v_{n}^{238}\right\rangle$ $1 \leq i \leq n-1 \quad v_{1} \ldots v_{n} \in V$

$$
\begin{gathered}
\operatorname{ker}(A)=\left\langle v_{1} \otimes \ldots \otimes v_{n}+v_{1} \otimes \ldots \otimes v_{i+1} \otimes v_{i} \otimes \ldots \otimes v_{n}\right\rangle \\
1 \leq i s_{n-1} \quad v_{1}, \ldots, v_{n} \in V .
\end{gathered}
$$

$$
\begin{aligned}
\text { So } & \operatorname{Im}(S) \cong \frac{T^{n}(V)}{\operatorname{Ker}(S)}=\operatorname{Sym}^{n}(v) \\
& \operatorname{Im}(A) \cong \frac{T^{n}(V)}{\operatorname{Ker}(A)}=\Lambda^{n}(V)
\end{aligned}
$$

Prool: See HWIZ.
signed action!
Obs: View $S_{y m}{ }^{n}(V)=\left(T^{n}(V)\right)^{s_{n}}, \Lambda^{n}(V)=\left(T^{n}(V)\right)^{S_{n}, \varepsilon}$
Q: Compatibility with liman mops?

$$
\begin{aligned}
& f: V \longrightarrow W \longrightarrow T^{n}(f): T^{n}(V) \longrightarrow T^{n}(W) \text { limar } \\
& S^{n}(F): S^{n}(V) \longrightarrow S^{n}(W) \text { liman } \\
& \underset{\substack{\text { matrices } \\
\text { (wext times) }}}{\operatorname{mimis}} \rightarrow \Lambda^{n}(f): \Lambda^{n}(v) \longrightarrow \Lambda^{n}(W) \text { limeos }
\end{aligned}
$$

$$
\cdot T^{n}(f)_{\left(v, \otimes \ldots \otimes v_{n}\right)}=f\left(r_{1}\right) \otimes \cdots \otimes f_{\left(v_{n}\right)}
$$

$$
\varphi \downarrow_{T^{n}(V)}
$$

$$
\exists!T^{n}(f)
$$

limar

$$
\begin{aligned}
& S^{n}(f)\left(v_{1} \ldots v_{n}\right)=f\left(v_{1}\right) \cdots f\left(v_{n}\right) \\
& \Lambda^{n}(f)\left(v_{1} \wedge \ldots \wedge v_{n}\right)=f\left(v_{1}\right) \wedge \cdots \wedge f\left(v_{n}\right)
\end{aligned}
$$

Q: Unisersal Properties?
(unital, associative)
Prop given a $K K$-algebra A \& a K-linear map $V \xrightarrow{\varphi} A$, then

- \exists a unique extension $\left.: \bar{\varphi}: T^{\bullet} \mid V\right) \longrightarrow A \cdot\left(\bar{\varphi}_{l_{V}}=\varphi\right)$
- If A is a commutative algebra, then $\exists!\bar{P}: S^{\bullet}(V) \longrightarrow A$
- If A is skew-commutative, ce $a b=-b a \forall a, b \in A$, then $\exists!\bar{\varphi} \Lambda(V) \longrightarrow A$.

Prop: $\Phi V \otimes V \simeq S^{2}(V) \oplus \Lambda^{2}(V) \quad(\simeq$ even todd franc) $\left(v \otimes v^{\prime}\right) \longmapsto\left(\frac{v \otimes v^{\prime}+v^{\prime} \otimes v}{2} ; \frac{v \otimes v^{\prime}-v^{\prime} \otimes v}{2}\right)$
IF/ Well-depared ria universal property:
$W_{\text {nite }} V \times V \longrightarrow S^{2}(V) \oplus \Lambda^{2}(V)$ bilinear

$$
\left(v, v^{\prime}\right) \longmapsto\left(v \cdot v^{\prime}, v \wedge v^{\prime}\right)
$$

\Rightarrow This map factors through $V \otimes V$. This defines Φ. We view $S^{2}(V) \& \Lambda^{2}(V)$ as subspaces of $\Lambda \otimes \Lambda$. \& construct the inverse mop Φ^{-1} ria the inclusions $S^{2}(V) \longleftrightarrow T^{2}(V)$

$$
\Lambda^{2}(V) \longleftrightarrow T^{2}(V) \quad \square
$$

1) This decmpsisitim does not extend beyond $n=2$. Instead $v^{\otimes} n$

$$
\begin{aligned}
& \simeq \underset{c^{\lambda+n}}{\oplus} S^{\lambda}(V) \\
& \text { (partitions/n) } \\
& \lambda_{1} \geqslant \ldots \geqslant \cdots \geqslant 0, \sum_{i} \lambda_{i}=n \quad \lambda_{i} \in \mathbb{Z} \geqslant 0
\end{aligned}
$$

Q: What happens to T^{n}, S^{n} \& Λ^{n} when we asides direct seems? Lemma: Cusidu 2 rector spaces $V \& W$. Then $\forall n$:
(1) $S^{n}(V \oplus W)=\bigoplus_{i=0}^{n} S^{i}(V) \otimes S^{n-i}(W)$
(Think of polynomials in variables x_{i} (frs basis elements $\left.m V\right)$ commenting y_{j} \qquad
(2) $\Lambda^{n}(V \oplus W)=\bigoplus_{i=0}^{n} \Lambda^{i}(V)$
(x) $\Lambda^{n-i}(w)$

$$
\text { (3) } T^{n}(V \oplus W)=\bigoplus_{k=0}^{n}\left(\oplus\left(T^{i_{1}}(V) \otimes T^{i_{2}}(w) \otimes i_{k}=n=T^{i_{3}}(v) \otimes \ldots\right) \cdot\right)
$$

(Variables don't commute, wo we can't rearrange putting all of thV-pact before the W-piece)
PF/ Pick bases for V \& W \& check both sides of each identity share the same natural bases. (see HW 12)

