Lecture 39: Determinants, minors a pumanents
Recall: Given 2 extra spaces $V, W$ ser a field $\mathbb{K} \&$ a linear mop $V \xrightarrow{F} W$, we hare 3 natural linear maps fo all $x \geqslant 0$
(1) $T^{n}(V) \xrightarrow{T^{n}(f)=f^{\otimes n}} T^{n}(w) \quad$ with $f_{\left(v, \otimes \otimes \cdot \otimes v_{n}\right)}=f_{(v, 1)} \otimes \cdots f_{\left(\sigma_{n}\right)}$
(2) $S^{n}(v) \xrightarrow{S^{n}(f)} S^{n}(W)$ with $S^{n}(f)_{\left(v, \cdots v_{n}\right)}=f_{\left.\left(v_{1}\right) \cdots f_{\left(v_{n}\right)}\right)}$
(3) $\Lambda^{n}(v) \xrightarrow{\Lambda^{n}(f)} \Lambda^{n}(W)$ with $\Lambda^{n}(f)_{\left(v, \Lambda \ldots \wedge v_{n}\right)}=f_{(v,)} \Lambda \cdots f_{\left(v_{n}\right)}$
(1) is defined ria uninusal property; (2) 2(3) an obtained fun $T^{\prime \prime}(f)$ by observing $f^{\otimes}\left|<v_{1} \otimes \cdots v_{n}-v_{1} \otimes \cdots \otimes v_{i+1} \otimes v_{i} \otimes \cdots \otimes v_{n}\right\rangle$ bis in

$$
\begin{aligned}
& i=1, \ldots n-1 \quad v_{1}, \ldots v_{n} \in V \\
& \left\langle w_{1} \otimes \ldots \otimes w_{n} \mp w_{1} \otimes \ldots \otimes w_{i+1} \otimes w_{i} \otimes \ldots \otimes v_{n} \quad \begin{array}{l}
i=1, \ldots n-1 \\
\left.w_{1}, \ldots w_{n} \in w^{\prime}\right\rangle
\end{array}\right\rangle \text {. }
\end{aligned}
$$

SI Determinants \& minors.
$F i x, V, W$ finite demensinal $\mathbb{K}$-vector spaces \& $f: V \longrightarrow W$ liner Say $V \simeq \mathbb{K}^{n}, W \simeq \mathbb{K}^{m}$ (pick bases $f \cap V \& W$ ), s $f \in \operatorname{Mat}_{m \times n}(\mathbb{K})$
ns

$$
\begin{aligned}
& \Lambda^{k}(V) \xrightarrow{\Lambda^{k}(f)} \Lambda^{k}(W)
\end{aligned}
$$

Def: Minors of $f$ are the entries of the matier for $g$.
More precisely, write $\left.i=\left(i, \ldots, i_{k}\right) \in\binom{[m}{k} \quad(k-s u b s e t s) A[m]\right)$

$$
\underline{\dot{j}}=\left(j, \cdots, j_{k}\right) \in\binom{[n]}{k} \quad\left(\begin{array}{l}
(n]  \tag{n}\\
[N]=3, \ldots, N\}
\end{array}\right.
$$

$$
\Lambda^{k}(f)_{\underline{i}, j}=\operatorname{det}\left(f^{\frac{i}{j}}\right)=\Delta_{\underline{j}}^{\underline{i}}(f)
$$

$\rightarrow$ submatiox of $f$ with nous in $i \&$
Q How do we compute $\Lambda^{k}(f)_{i, j}$ ? columns in $j$.

Fix $B=\left\{v_{1}, \ldots, v_{n}\right\}$ a basis for $V$

$$
B^{\prime}=\left\{w_{1}, \ldots, w_{n}\right\}
$$

Write $f\left(v_{j}\right)=\sum_{i=1}^{n} a_{i j} w_{i}$

$$
\Lambda^{k}(f)\left(v_{j,} \wedge \cdots \wedge v_{j k}\right)=\left(\sum_{i=1}^{m} a_{i j 1} w_{i}\right) \Lambda \cdots \Lambda \Lambda\left(\sum_{i=1}^{m} a_{i j k} w_{i}\right)
$$

$$
\Rightarrow \Lambda^{k}(f)_{\underline{i}, \underline{j}}=\text { coff of } w_{i,} \Lambda \ldots n w_{i k} \text { in } \Lambda^{k}(f)\left(v_{j i} \wedge \ldots \wedge v_{j k}\right)
$$

Recall $\omega_{\sigma(i,)} \wedge \cdots \wedge \omega_{\sigma(i k)}=\sup (\sigma) \omega_{i}, \wedge \cdots \wedge \omega_{i k} \quad \forall \sigma \in \mathbb{S}_{k}$.
So coff of $w_{i} \wedge \ldots \omega_{i k}$ in $\left(\sum_{i=1}^{m} a_{i j 1} w_{i}\right) \wedge \ldots \Lambda\left(\sum_{i=1}^{m} a_{i j k} w_{i}\right)$
is $\sum_{\sigma \in S_{k}} \operatorname{sign}(\sigma) a_{i_{\sigma_{(1)}} j_{1}} a_{i_{(2)} j_{2}} \cdots a_{i{ }_{\sigma(k)} j_{k}}$
In particular : If $k=n=m$ wite $\operatorname{det}(F)=\Delta_{1, \cdots, n}^{1, \ldots, n}(F)$
This covers the penuutation formula for determinants.

$$
\begin{aligned}
& \operatorname{dt}(A)=\sum_{\sigma \in S_{n}} \operatorname{sim}(\sigma) a_{\sigma(1)}{ }^{a} \sigma_{(2) 2} \cdots a_{\sigma(n) n} . \\
&=\sum_{\sigma E=S_{n}} \operatorname{sim}(\zeta) a_{1 \sigma_{(1)}} a_{2 \sigma_{(2)}} \cdots a_{n \zeta(n)} \\
&=\sigma^{-1}
\end{aligned}
$$

Consequence (1) $\operatorname{det}(A)=\operatorname{det}\left(A^{\top}\right) \quad A \in M_{n \times n}(\mathbb{X})$

Cosspuence (2) Row-expansin frumula for $\operatorname{det}(A)$
SF/ Fix ith Row HA

$$
\operatorname{det}(A)=\sum_{j=1}^{n} a_{i j} \underbrace{\sum_{\sigma: \sigma_{(j)}=i} \operatorname{seq}(\sigma) a_{\sigma(1) 1} \cdots \widehat{a_{\sigma(j), j}} \cdots a_{\sigma(n), n}}_{(k-k)}
$$

nstucd $\sigma$ to $_{0} \tilde{\sigma}=\{1, \ldots, \hat{\jmath}, \ldots n\} \xrightarrow[\text { bij }]{\longrightarrow}\{1, \ldots, \hat{i}, \ldots, n\}$ so

$$
\begin{aligned}
& \operatorname{sim}(\sigma)=(-1)^{i+j} \sin (\tilde{\sigma}) \\
& \text { so }(4 x)=\operatorname{det}\left(A^{(i, j)}\right)(-1)^{i+j} \\
& \Rightarrow \operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det} A^{(i j)}
\end{aligned}
$$

Obs: Using (1) \& (2) we get colemm expansin frumla as well.
Consequence (3) If $A$ has 2 equal nous (nest z equal cols), then $\operatorname{dit}(A)=0$.
Pf/ $\Lambda^{n}(f)\left(v_{1}, \wedge \ldots \wedge v_{n}\right)=0$ in $\Lambda^{n}\left(\mathbb{K}^{n}\right) \simeq \mathbb{K}$ by $(\mathbb{K})$
Def (Cofactor matiox of $A$ )

$$
\operatorname{cof}(A)_{i, j}=(-1)^{1+j} \text { at } A^{(i, j)} \quad 1 \leq i, j \leq n .
$$

Consequence (4) $(\operatorname{cof} A)^{\top} A=\operatorname{det}(A) I_{n}=A(\operatorname{cof} A)^{\top}$

$$
\begin{aligned}
3 f /\left((\operatorname{cof} A)^{\top} A\right)_{i j} & =\sum_{l=1}^{n}(\operatorname{cof} A)_{i l}^{\top} a_{l j} \\
& =\sum_{l=1}^{n}(-1)^{i+l} \operatorname{det}\left(A^{(l, i)}\right) a_{l j}
\end{aligned}
$$

- If $i=j$ This is $j^{\text {th }}$ column expansion of $\operatorname{det}(A)$.
. If $i \neq j$
$\operatorname{det}\left(A^{\prime}\right)$ where
$A^{\prime}$ is the mater obtained fun $A$ by replacing $i^{t h}$ of of $A$ by the $j^{\text {th }}$ of of $A$. By Consequence (3), $\operatorname{det}\left(A^{\prime}\right)=0$.

$$
\text { so }(\cot A)^{\top} A=\operatorname{det} A I_{n} \text {. }
$$

$$
\text { - } \begin{aligned}
A(\operatorname{cof} A)^{\top}=\left((\operatorname{cof} A) A^{\top}\right)^{\top}=\left(\left(\operatorname{cof} A^{\top}\right)^{\top} A^{\top}\right)^{\top} & =\left(\operatorname{det} A^{\top} I_{n}\right)^{\top} \\
& =\operatorname{det} A I_{n} .
\end{aligned}
$$

since

$$
\left(\operatorname{cof} A^{\top}\right)_{i j}=(-1)^{i+j} \operatorname{det}\left(A^{\top}\right)^{(i, j)}=(-1)^{(+j)} \operatorname{det} A^{(j, i)}=(\operatorname{cof} A)_{j, i} .
$$

Consequence (4) determinant is nultiplicatere. (see HWIZ)
Proof: Write $V \xrightarrow{G} W$ \& $W \xrightarrow{\delta} V \quad d i n V=\operatorname{dim} W=\operatorname{dim} V=n$ $B=\left\{v_{1}, \ldots v_{n}\right\}, B_{2}=\left\{w_{1}, \ldots, w_{n}\right\}, B_{3}=\left\{u_{1}, \ldots, u_{n}\right\}$ bases $f n v, w_{d} v$.
Then: $\Lambda^{n}(g \circ f): \Lambda_{11}^{n}(v) \xrightarrow{\Lambda^{n}(f)} \Lambda^{n}(w) \xrightarrow{\Lambda^{n}(g)} \Lambda^{n}(v)$

$$
\begin{align*}
& \operatorname{Sp}\left(v_{1}^{\prime \prime} \wedge \cdots \wedge v_{n}\right) \quad \operatorname{Sp}^{\prime \prime}\left(w_{1} \wedge \cdots \wedge w_{n}\right) \quad \operatorname{Sp}^{\prime \prime}\left(u, \wedge \wedge \wedge u_{n}\right) \\
& \mathbb{K}_{12}^{\operatorname{det}(f) .} \mathbb{1 2} \operatorname{det}(g) \rightarrow \mathbb{K}^{12}
\end{align*}
$$ dit (oof).

So $\operatorname{det}(\delta \circ f)=\operatorname{det}(g) \cdot \operatorname{det}(f)$ gives the linear map $\mathbb{K} \longrightarrow \mathbb{K}$ on the bottom now.
$\xi_{2}$ Permanents
Again fix $V, W$ with $\operatorname{dim} V=n, \operatorname{den} W=m$ \& $V \xrightarrow{G} W$ limen.
Q. What happen if we do this $f>S^{k}(V) \xrightarrow{S^{k}(f)} S^{k}(W)$ ?

A We get permanents! (HW/2)
Inf: $\operatorname{Peum}(f)_{i, j}=\operatorname{cotf}$ of $\omega_{i_{1}} \cdots \omega_{i_{k}} \quad$ in $\left.S^{k}(f)_{\left(j_{j}, \cdots b_{j k}\right)}\right)$
I We are NOT allowed to have upetitions, so we are not capturing all the coefficients of $S^{k}(f)$. Can include this by repeating columns.
In particular, fo $n=m=k$, we hare

$$
\operatorname{pum}(A)=\sum_{\sigma \in S_{n}} a_{\sigma(1) 1} \cdots a_{\sigma(n) n}
$$

11 It is no limper true that matrices with repeated sous hare permanent $=0$. This makes it res hard to compete permanents! In particular, there are no good alperitums for computing permanents. (Best moults are ben to A. Barrings)
33. Gaussian Decomposition:

Fix $x \in G L_{n}(\mathbb{K})$
Def. We say $X$ admits a Gaussian Decompssitim if (HW/2)

$$
x=x^{-} x^{0} x^{+}
$$

where $X^{0}=$ diagmal matrix

$$
\begin{aligned}
& x^{-}=\left(\begin{array}{cc}
1 & * \\
0 & * \\
0 & 1
\end{array}\right) \\
& x^{+}=\left(\begin{array}{ccc}
1 & 0 \\
* & -1
\end{array}\right)
\end{aligned}
$$

Thecreven 1: Gaussian decmepsoitions are unique.
BF/ $x^{-} x^{0} x^{+}=y^{-} y^{0} y^{+}$

$$
\left(y^{-}\right)^{-1} x^{-} x^{0}\left(x^{+}\right)\left(y^{+}\right)^{-1}=y^{0} \quad \text { Gaussian decamp of } y^{0}
$$

since $\left(y^{-}\right)^{-1} x^{-}=\left(\begin{array}{cc}1 & - \\ 0 & -1 \\ 0 & 1\end{array}\right)^{-1}\left(\begin{array}{cc}1 & - \\ 0 & * \\ 0 & \cdots\end{array}\right)=\left(\begin{array}{cc}1 & -k \\ 0 & - \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}1 & k \\ 0 & 1 \\ 0\end{array}\right)=\left(\begin{array}{cc}1 & k \\ 0 & - \\ 0 & 1\end{array}\right)$

So it's enough to show it for diagmal matrices.
Claim: $X^{-} X^{0} X^{+}=y^{0}$ diagonal $\Rightarrow X^{-}=X^{+}=I_{n}$
PF/ $\underbrace{x^{0} x^{+}}_{\text {upper } \Delta}=\underbrace{\left(x^{-}\right) y^{0}}_{\text {lower } \Delta}$
so both an diagmal (\& insertitle!)

$$
\begin{aligned}
& \begin{array}{l}
X^{0}=\left(\begin{array}{lll}
x_{1} & & \\
& \cdots & x_{n}
\end{array}\right) \Rightarrow x^{0} X^{+}=\left(\begin{array}{cccc}
x_{1} & x & \cdots & k \\
x_{2} & \cdots & \vdots \\
0 & \ddots & \vdots \\
& & & x_{n}^{*}
\end{array}\right)=\left(\begin{array}{ccc}
y_{1} & & 0 \\
x_{1} & \cdots & 0 \\
\vdots & \ddots & 0 \\
y_{n} & \cdots & y_{n}
\end{array}\right)
\end{array} \\
& y^{0}=\left(\begin{array}{lll}
y_{1} & \ldots \\
& \cdots & y_{n}
\end{array}\right) \text { press } x_{1}=y_{1}, x_{2}=y_{2}, \ldots . x_{n}=y_{n} \\
& x^{+}=\left(\begin{array}{ccc}
\left.\begin{array}{ccc}
1 a_{12} & \cdots a_{1 n} \\
1 & \cdots & a_{n-1, n} \\
& \ddots
\end{array}\right) \Rightarrow 0=\underset{j>i}{\left(x^{0} x^{+}\right)_{i j}} & =\sum_{k=1}^{n}\left(x^{0}\right)_{i k}\left(x^{+}\right)_{k j} \\
& & \\
& =\left(x^{0}\right) \ldots\left(x^{+}\right) \ldots
\end{array}\right. \\
& j>i=\left(x^{0}\right)_{i i}\left(x^{+}\right)_{i j} \\
& =\underset{x_{i}}{\substack{t}}\left(x^{4}\right)_{i j} \partial
\end{aligned}
$$

$\operatorname{prces}\left(x^{+}\right)_{i j}=0 \quad \forall j>i \quad$ so $X^{+}=I_{n}$.
Similarly: $X^{-}=I_{n} \quad$ so $X^{0}=Y^{0}$.
Theorem 2: $X$ admits $G \cdot \Delta \Longleftrightarrow \Delta_{1, \ldots i}^{1, \ldots .}(x) \neq 0 \quad \forall i=1, \ldots, n$

$$
\begin{aligned}
& 3 F /(\Rightarrow) \quad \Delta_{1, \ldots k}^{1, \ldots k}(x)=\Delta_{1, \ldots k}^{1, \ldots k}\left(x^{-} x^{0} x^{+}\right)
\end{aligned}
$$

$$
=\operatorname{det}\left(\begin{array}{cc}
d_{1} & 0 \\
0 & 0 \\
0 & d_{k}
\end{array}\right)=d_{1} \cdots d_{k}
$$

So $\operatorname{det}(x)=d_{1} \ldots d_{n} \neq 0 \leftrightarrow$ all $d_{i} \neq 0$.
$\Rightarrow \Delta_{1, \ldots k}^{1, \ldots k}(\Delta)=d_{1} \ldots d_{k}$ nompers $\forall k$.
Mrowtes: $d_{1}=\Delta_{1}^{\prime}(x)$

$$
d_{1} d_{2}=\Delta_{1,2}^{1,2}(\Delta) \leadsto d_{2}=\frac{\Delta_{1,2}^{1,2}(x)}{\Delta_{1}^{\prime}(x)}
$$

In pueral $d_{k}=\frac{\Delta_{1, \ldots k}^{1, \ldots k}(x)}{\Delta_{1, \ldots k-1}^{1, \ldots-1}(x)}$.
So $X_{0}$ is uniquely ditermined by the pincipal minose of $X$.
$\Leftrightarrow$ Explicitty, write

$$
\left(x^{0}\right)_{k k}= \begin{cases}\Delta_{1}^{1}(x) & k=1 \\ \frac{\Delta_{1, k}^{1,-k}(x)}{\Delta_{1}^{1-k-1}(x)} & k>1\end{cases}
$$

$$
\left(x^{-}\right)_{j i}=\frac{\Delta_{1, \ldots, i}^{1, \ldots, i-j}(x)}{\Delta_{1 \ldots i}^{1, \ldots i}(x)}, \quad\left(x^{+}\right)_{j i}=\frac{\Delta_{1, \ldots i, j}^{1, \ldots i}(x)}{\Delta_{1 \ldots i}^{1, \ldots i}(x)}
$$

and sleck $X=X^{-} X^{0} X^{+}$(by inductem mn)
Obs: The constinction is also the for $G L_{n}(R)$ where $R$ is not necessarily a commutatise ning (defies dits ria column expansion). Obs 2: No vaucshing minurs is an oper conditim in Mat $n_{n \times n}$ (IK) We hase a dunse pper sit $U \subseteq M_{n t_{n \times n}}|K|$ which we pacamenterige as $\begin{aligned} & \text { (Big Bnehat } \\ & \text { Cell) }\end{aligned} U \cong \mathbb{K}^{\frac{n(n-1)}{2}} \times\left(\mathbb{K}^{*}\right)^{n} \times \mathbb{K}^{\frac{n(n-1)}{2}}$
cell) ( ) Kries $m X^{-}$) ewhies $m X^{\circ}$ e enties $m X^{+}$ Can poore statements on Matnxn (IV) by astriding To $U$.

