Math 6501 - Enumerative Combinatorics I - Homework 1
 Due at 3:00pm on Friday September 6th, 2019

Please indicate any source in the literature used in finding the solution to a given problem. You are encouraged to work in teams, but individual solutions must be submitted for grading and credit. If you work in teams, please indicate the name of your collaborator(s) for each problem.

Problem 1. Let V be a finite set. A $\operatorname{graph} G=(V, E)$ is a collection E of 2-element subsets of V. The elements of V are called vertices and the pairs in E are called edges.
(i) List (or draw) the graphs with vertex set $[4]=\{1,2,3,4\}$ if we consider the elements of V to be distinct (e.g., by labeling them).
(ii) Repeat the above question but now assume the elements of V are indistinguishable, i.e. the graphs ([4], $\{(1,2)\})$ and $([4],\{(2,3)\})$ are identified.
(iii) Give a general procedure to count the graphs on V (with $|V|=n$) in the labeled and unlabeled cases.

Problem 2. Let S_{1}, \ldots, S_{m} be pairwise disjoint sets with $\left|S_{j}\right|=a_{j} \in \mathbb{Z}_{>0}$.
(i) Show that the number of subsets of $S_{1} \cup \ldots \cup S_{m}$ containing at most one element from each S_{j} is the product $\left(a_{1}+1\right) \cdots\left(a_{m}+1\right)$.
(ii) Apply the previous item to the following number-theoretic problem. Let $n=p_{1}^{a_{1}} \ldots p_{m}^{a_{m}}$ be the prime decomposition of n. Then, the number of divisors of n equals $\left(a_{1}+1\right) \cdots\left(a_{m}+1\right)$. Conclude that n is a perfect square precisely when this number is odd.

Problem 3. Define Euler's φ-function as $\varphi(n):=\#\{k: 1 \leq k \leq n, k$ relatively prime to $n\}$. Show that $\sum_{d \mid n} \varphi(d)=n$ by decomposing $[n]:=\{1,2, \ldots, n\}$ into disjoint sets.

Problem 4. Let $f(n, k)$ be the number of k-subsets of $[n]$ not containining a pair of consecutive integers.
(i) Show that $f(n, k)=\binom{n-k+1}{k}$.
(ii) Show that $\sum_{k=0}^{n} f(n, k)=F_{n+2}$, the $(n+2)$ th. Fibonacci number.

Problem 5. Show that the sum of the right-left diagonals in Pascal's triangle (viewed in matrix form) ending at $(n, 0)$ is the $(n+1)$ th. Fibonacci number F_{n+1}.

Problem 6. Let $L(m, n)$ be the number of lattice paths from $(0,0)$ to (m, n) using steps $(1,0)$ and $(0,1)$.
(i) Show that $L(m, n)$ satisfies the following recursion: $L(m, n)=L(m-1, n)+L(m, n-1)$, where $L(m, n)=0$ if m or n are negative. Conclude that $L(m, n)=\binom{m+n}{n}$.
(ii) Use item (i) to give a combinatorial proof of the following variant of the Vandermonde Identity:

$$
\sum_{k=0}^{n}\binom{s+k}{k}\binom{n-k}{m}=\binom{s+n+1}{s+m+1} \quad \text { for } s, m, n \in \mathbb{Z}_{\geq 0}
$$

Problem 7. Consider the lattice \mathbb{Z}^{2} and let m, n be two non-negative integers. A Delannoy path from (0,0) to (m, n) is a lattice path that uses steps $(1,0),(0,1)$ and $(1,1)$. Let $D_{m, n}$ be the number of such paths, which we call Delannoy number.
(i) Draw all five paths corresponding to $m=2$ and $n=1$ (i.e., $D_{2,1}=5$).
(ii) Prove that $D_{m, n}=\sum_{k}\binom{m}{k}\binom{n+k}{m}$ (note that the sum is finite!).
(Hint: Classify the paths by the number of diagonal steps taken.)

