MATH 6501 - HOMEWORK 1

QIAN CHAO

Solution 1. (i) Let a = (1,2), b = (1,3), ¢ = (1,4), d = (2,3), e = (2,4), f =
(3,4). Then we have in total 2¢ = 64 different graphs, which are ([4], S) where
S is any subset of X = {a,b,¢,d,¢, f}.

(ii) There are 11 of them, using the same notation in (a), they are: ([4],¢), (4], {a}),
(4, {a,}), ({4, {a, £}), (4], {a, b, c}), (4], {a, d, 1), ([4], {a, b, d}), ([4], {a, . d, f}),
([4],{a,b,c,d}), ([4],{a,b,c,d,e}), ([4],{a,b,c,d,e, f}).

(iii) For labeled case, if there are n vertices, there are totally ('2‘) possible edges and
they are all different, so there are 2(2) different graphs, i.e. ([4],S) where S is
any subset of the edge set. For unlabeled case, basically it is the labeled case
quotient by the action of symmetric group S, on vertices, so we can count by
Burnside’s lemma, i.e. for each ¢ € S,, compute the number of edge sets S
which are invariant under the action of o, denoted as N,, then the total number
of different graphs is —Zﬁ%ﬂﬁl Another idea is counting by degree sequences, i.e.
the sequence (ay, aq, .. .,a,) where a; > ag > -+ > a, and a; € Z>p. We know
each degree sequence corresponds to different graph, so for £ =0,1,..., (Z), let
N;, be the number of degree sequences with k edges, in other words the number
of non-negative integer solutions of the equation a; + as + - - - + a,, = 2k with
all a; < m — 1, then the total number of different graphs is %)Nk. (I am not
sure which one is better because I don’t have an idea aboutkﬁoow hard it is to

find Nk.)

Solution 2. (i) We can have a bijection from subsets of Sy U S, U -+ U Sy, to
[a; + 1] X -+- X [ay, + 1] such that each n; € [a; + 1] represents the action to
the set S;, for n; = 1,2,...,a; that means picking the n;’s element from S;,
and n; = a; + 1 means picking nothing from S;. So the number of subsets of
S1US U+ US,, isequal to [[a; + 1] X +++ X [am + 1]| = (@1 + 1) -+ (am + 1).

(ii) We know any divisor d of n has the form d = p{* - - - pJ where 0 < r; < a; fori =
1,...,m. Let S; = {p}, -+ ,p{}, then all S;’s are disjoint since (p;,p;) =1 for
any 1 # j. Each divisor d can be obtained by picking a subset of S;US;U- - -US,,
containing at most one element from each set and then multiply together, apply
part (a), the number of divisors of n equals (a; +1) - (am + 1). For n being a
perfect square it is equivalent to say all the prime powers in its decomposition
is even, and all a;’s are even if and only if all a; + 1’s are odd if and only if

(ag +1) - (am+1) is odd.
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Solution 3. Let Sy = {r € [n] : (r,n) = k}, for kln. By our definition, Si’s are

disjoint subsets of [n], and [n] = (JSk. Now for any r € S, (r,n) = k, or in
kln
other words (r/k,n/k) = 1, so each element r in Sy is one-to-one corresponded to a

number 7/k which is relatively prime and less or equal to n/k, then by definition of
@, |Sk] = p(n/k). Now |[n]| = | U Sk| = > |Sk| = > w(n/k), rewriting the formula
kln kln

by setting d = n/k, we have n = |[n]| =" w{d).
din

Solution 4. (i) Write such a k-subset as an increasing sequence, say (a1, ag, . . ., k),
then we have a;41 —a; > 2 since there is no consecutive pair. We define a bijec-
tion from the set of such k-sequences of [n] to the set of all strictly increasing k-
sequences of [n—k+1] by (a1, as,...,ax) — (b1, bs, ..., b) where b; = a;—(i—1),
©=1,...,k. This map is well-defined since b;11 —b; = (@11 —1)—(a;— (i—1)) =
ai+1 —a; —1 > 1 so we do get a strictly increasing sequence, and the inverse
map is given by (b1, bs,...,bx) — (a1,as,...,a;) where a; = b; +1i — 1. Since
we have this bijection, f(n,k) is equal to the number of all strictly increasing
k-sequences of [n — k + 1] which is actually k-subsets of [n — k + 1], therefore we
have f(n, k) = (""F*).

(i) Let T(n) = 3° f(n, k), then T(1) = £(L,0)4+-£(1,1) = 1+1 = 2, T(2) = £(2,0)+
k=0
f(2,1) + £(2,2) =1+ 240 = 3, now for n > 2, we have T'(n) = Zn: fln, k) =
k=0
3 = SO+ () = () +
and the facts that {5 =i and ()= {2 =
s =k —1, we have T'(n) = Z (a-ti-ay nz: (B-B-atl) Z f(n—1,k)+
k=0 =0 k=0

nz_:zf(n—Q, 8) = T(n—1)+T(n—2). So we have T'(1) = F3, Ty = Fy, and {T'(n)}
=0

satisfies the same recurrence relation as {F,}, then we must have T'(n) = F, 5

2—: (- ) (by Pascal’s recurrence
k=1
0), rewriting the RHS by setting

)+
)
+

for all n.

Solution 5. If n = 0, then the sum has only one term (g) =1= Fj; whenn > 1,

apply the results in Problem 4, we have the sum of right-left diagonal is ) (n;]”)

k=0

—1 . i n—1
> (("—l)k”"“) = > f(n—=1k) = T(n — 1) = F,y1, the first equality is because
k=0

(3):Oforn>1.

Solution 6. (i) If m = 0, then we only use step (0,1) therefore the last step
must be (0,1), so L(0,n) = L(0,n — 1); if n = 0, we only use step (1,0)
therefore the last step must be (1,0), so L(m,0) = L(m — 1,0); if m,n > 1,
consider the last step we use, if it is (1,0), then we will arrive point (m — 1,n)
before last step, and if it is (0,1) we arrive point (m,n — 1), the number of
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paths to (m,n) is the sum of numbers of paths under this two situations, so
L(m,n) = L(m — 1,n) + L(m,n — 1). For a path from (0,0) to (m,n) using
steps (1,0) and (0,1), there will be m + n steps in total, actually m steps of
(1,0) and n steps of (0,1), so we can have a bijection from the set of paths to
all n-subsets of [m +n| by taking a; into the n-subset if the a;’s step in the path
is (0,1), and the inverse map is given by mapping an n-subset S of [n + m] to
a path where the a;’s step is (0,1) if a; € S and all other steps (1,0). So by
the bijection, the number of all paths from (0,0) to (m, n) using steps (1, 0) and
(0,1) is equal (™).

(ii) We prove by understanding the meaning of both sides of this equality using
part (i). For RHS, (jir"nill) = L(n — m,s +m + 1), which is the number of
paths from (0,0) to (n — m,s +m + 1). Here since s,m,n > 0, consider this
point in zy coordinate, to go from (0,0) to (n — m,s + m + 1), we have to
cross the line y = s. Suppose the last intersection point of our path and line
y = s is (k, s), then we can cut our path into two parts: From (0,0) to (k,s),
and from (k,s) to (n —m,s +m + 1). (notice here I said last intersection
point, because we may take steps (1,0) on the line y = s so there could be
more than 1 intersection points, however, if we choose (k,s) to be the last
intersection point, we get unique divisions) For (k, s) being the last intersection
point, it means the next step starting from (k,s) must be (0,1) and we can
always take this step (0, 1) because m + s + 1 is strictly greater than s, so by a
path from (k, s) to (n — m, s + m + 1) actually we mean a path from (k, s + 1)
to (n — m,s + m + 1) since the first step is always fixed and all other steps
are free. Now counting the number of ways for each parts, the total number of
paths from (0,0) to (n —m, s +m + 1) leaving the line y = s at (k, s) is equal
to the number of paths from (0,0) to (k,s) times the number of paths from
(k,s+1) to (n—m,s+m+1),ie. (*°1*)("*). Now summing over all possible
points. (k,s), we get the number of all paths from (0,0) to (n —m,s +m + 1),
o, 35 (E (5 = Lln—m,s tmo+ 1) = (o).

Solution 7. (i) There are two cases: we use diagonal step or we don’t use diagonal
step. In the first case, there will only be two steps to reach (2,1), one (1,1)
and one (1,0), we only need to decide which step is the diagonal step, so there
are two paths; in the second case, it is just the same as the path problem in
Problem 6, so there are (:f) = 3 paths. They look like:

[
{
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(i) With a fixed number, say [, of diagonal steps, the number of Delannoy paths
is (n’f;: Z:ﬁ l), since there are m + n — [ steps in total (besides [ diagonal steps,
there are also m — [ steps of (1,0) and n — [ steps of (0,1)), and we need to

choose which step to take (1,0), which step to take (0, 1) and which step to take

(1,1). Summing over all possible numbers of digaonal steps, we have D, =
min(m,n) min(m,n) min(m,n)

(o) = % (UG = 5 (MR (), setting k =

m — [, we have Dm,n == i (n;k) (7:) :
k=m—min(m,n)

Remark: I discussed most of the problems with Aziz and Jonghoo.



