Math 6501 - Enumerative Combinatorics I - Homework 2
 Due at $3: 00 \mathrm{pm}$ on Monday September 16th, 2019

Please indicate any source in the literature used in finding the solution to a given problem. You are encouraged to work in teams, but individual solutions must be submitted for grading and credit. If you work in teams, please indicate the name of your collaborator(s) for each problem.

In Problems 2 through 7 below, q denotes a fixed formal parameter.

Problem 1. (A combinatorial interpretation of q-factorial numbers)

(i) Show that the number of sequences $\emptyset=S_{0} \subsetneq S_{1} \subsetneq \ldots \subsetneq S_{n}=\{1, \ldots, n\}$ of subsets of $[n]$ is n !.
(ii) Let q be a prime power, i.e., $q=p^{m}$, and let \mathbf{F}_{q} be the finite field with q-elements. A full- flag of vectors subspaces of \mathbf{F}_{q} is as sequences of the form:

$$
\mathcal{F}_{\bullet}:\{0\}=V_{0} \subsetneq V_{1} \subsetneq V_{2} \subsetneq \ldots \subsetneq V_{n}=\mathbf{F}_{q}^{n},
$$

where each V_{i} is a vector subspace of \mathbf{F}_{q}^{n}. Show that the number of such full flags is $[n]_{q}$!.
Problem 2. Prove the following variant of Pascal's q-recurrence:

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=q^{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q}+\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right]_{q} \text { for } k, n \in \mathbb{Z}_{\geq 0},
$$

where $\left[\begin{array}{l}0 \\ 0\end{array}\right]_{q}=1$ and $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=0$ for $k>n$. Use it to show $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ in $\mathbb{Z}[q]$ has degree $k(n-k)$ if $0 \leq k \leq n$.
Problem 3. Let m, n, k be non-negative integers and consider the primitive n th. root of unity $\zeta=e^{2 \pi i / n}=$ $\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)$ in \mathbb{C}. Show that the polynomial $f(q)=\left[\begin{array}{c}n m \\ k\end{array}\right]_{q}$ in $\mathbb{Z}[q]$ satisfies:

$$
f(\zeta)=\left\{\begin{array}{cl}
\binom{m}{\ell} & \text { if } k=n \ell \text { for some } \ell \in \mathbb{Z} \\
0 & \text { otherwise }
\end{array}\right.
$$

Problem 4. Let $0 \leq k \leq n$ and set $f(q):=\left[\begin{array}{l}n \\ k\end{array}\right]_{q} \in \mathbb{Z}[q]$. Show that $f(1 / q)=q^{-k(n-k)} f(q)$ and use it to prove $f^{\prime}(1)=\frac{k(n-k)}{2}\binom{n}{k}$.
Problem 5. Proved the following q-analog of the Binomial Theorem:

$$
\prod_{k=0}^{n-1}\left(1+q^{k} x\right)=\sum_{k=0}^{n} q^{\binom{k}{2}}\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q} x^{k} \quad \text { where } n \in \mathbb{Z}_{>0} \text { is fixed. }
$$

Problem 6. Prove the q-Vandermonde identity:

$$
\sum_{i=0}^{\ell} q^{i(i+m-\ell)}\left[\begin{array}{c}
n \\
i
\end{array}\right]_{q}\left[\begin{array}{c}
m \\
\ell-i
\end{array}\right]_{q}=\left[\begin{array}{c}
n+m \\
\ell
\end{array}\right]_{q} \quad \text { where } m, n, \ell \in \mathbb{Z}_{\geq 0}
$$

(Hint: Mimic the proof of the classical Vandermonde identity discussed in class.)
Problem 7. (Non-commuting q-Binomial and q-Multinomial Theorems)
(i) Let x and y be non-commuting variables satisfying the commutation relation $y x=q x y$. Assume q commutes with x and y. Show that

$$
(x+y)^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} x^{k} y^{n-k}
$$

(ii) Let $m \geq 1$. Consider m variables x_{1}, \ldots, x_{m} subject to the commuting relation: $x_{i} x_{j}=q x_{j} x_{i}$ for all $i>j$. Assume q commutes with all x_{i} 's. Generalize the identity of the previous item to $\left(x_{1}+\ldots+x_{m}\right)^{n}$.
(iii) [Bonus] Let $m \geq 1$. Consider m commuting parameters q_{1}, \ldots, q_{m} and m non-commuting variables x_{1}, \ldots, x_{m} subject to the commuting relation: $x_{i} x_{j}=q_{j} x_{j} x_{i}$ for all $i>j$ and $q_{k} x_{l}=x_{l} q_{k}$ for all k, l. Generalize the identity of the previous item to $\left(x_{1}+\ldots+x_{m}\right)^{n}$ in this new setting.

