Math 6501 - Enumerative Combinatorics I – Homework 2

Due at 3:00pm on Monday September 16th, 2019

Please indicate any source in the literature used in finding the solution to a given problem. You are encouraged to work in teams, but individual solutions **must** be submitted for grading and credit. If you work in teams, please indicate the name of your collaborator(s) for each problem.

In Problems 2 through 7 below, q denotes a fixed formal parameter.

Problem 1. (A combinatorial interpretation of *q*-factorial numbers)

- (i) Show that the number of sequences $\emptyset = S_0 \subsetneq S_1 \subsetneq \ldots \subsetneq S_n = \{1, \ldots, n\}$ of subsets of [n] is n!.
- (ii) Let q be a prime power, i.e., $q = p^m$, and let \mathbf{F}_q be the finite field with q-elements. A full- flag of vectors subspaces of \mathbf{F}_q is as sequences of the form:

 $\mathcal{F}_{\bullet} \colon \{0\} = V_0 \subsetneq V_1 \subsetneq V_2 \subsetneq \ldots \subsetneq V_n = \mathbf{F}_q^n,$

where each V_i is a vector subspace of \mathbf{F}_q^n . Show that the number of such full flags is $[n]_q!$.

Problem 2. Prove the following variant of Pascal's *q*-recurrence:

$${}^{n}_{k}{}^{l}_{q} = q^{k} \left[{}^{n-1}_{k}\right]_{q} + \left[{}^{n-1}_{k-1}\right]_{q} \text{ for } k, n \in \mathbb{Z}_{\geq 0}$$

where $\begin{bmatrix} 0\\ 0 \end{bmatrix}_q = 1$ and $\begin{bmatrix} n\\ k \end{bmatrix}_q = 0$ for k > n. Use it to show $\begin{bmatrix} n\\ k \end{bmatrix}_q$ in $\mathbb{Z}[q]$ has degree k(n-k) if $0 \le k \le n$.

Problem 3. Let m, n, k be non-negative integers and consider the primitive *n*th. root of unity $\zeta = e^{2\pi i/n} = \cos(\frac{2\pi}{n}) + i\sin(\frac{2\pi}{n})$ in \mathbb{C} . Show that the polynomial $f(q) = \begin{bmatrix} nm \\ k \end{bmatrix}_q$ in $\mathbb{Z}[q]$ satisfies:

$$f(\zeta) = \begin{cases} \binom{m}{\ell} & \text{if } k = n \,\ell \text{ for some } \ell \in \mathbb{Z}, \\ 0 & \text{otherwise.} \end{cases}$$

Problem 4. Let $0 \le k \le n$ and set $f(q) := {n \choose k}_q \in \mathbb{Z}[q]$. Show that $f(1/q) = q^{-k(n-k)} f(q)$ and use it to prove $f'(1) = \frac{k(n-k)}{2} {n \choose k}$.

Problem 5. Proved the following *q*-analog of the **Binomial Theorem**:

$$\prod_{k=0}^{n-1} (1+q^k x) = \sum_{k=0}^n q^{\binom{k}{2}} [^n_k]_q x^k \quad \text{where } n \in \mathbb{Z}_{>0} \text{ is fixed.}$$

Problem 6. Prove the *q*-Vandermonde identity:

$$\sum_{i=0}^{\ell} q^{i(i+m-\ell)} \begin{bmatrix} n \\ i \end{bmatrix}_q \begin{bmatrix} m \\ \ell-i \end{bmatrix}_q = \begin{bmatrix} n+m \\ \ell \end{bmatrix}_q \quad \text{where } m, n, \ell \in \mathbb{Z}_{\geq 0}.$$

(*Hint:* Mimic the proof of the classical Vandermonde identity discussed in class.)

Problem 7. (Non-commuting q-Binomial and q-Multinomial Theorems)

(i) Let x and y be non-commuting variables satisfying the commutation relation yx = qxy. Assume q commutes with x and y. Show that

$$(x+y)^n = \sum_{k=0}^n {n \brack k}_q x^k y^{n-k}.$$

- (ii) Let $m \ge 1$. Consider *m* variables x_1, \ldots, x_m subject to the commuting relation: $x_i x_j = q x_j x_i$ for all i > j. Assume *q* commutes with all x_i 's. Generalize the identity of the previous item to $(x_1 + \ldots + x_m)^n$.
- (iii) [Bonus] Let $m \ge 1$. Consider *m* commuting parameters q_1, \ldots, q_m and *m* non-commuting variables x_1, \ldots, x_m subject to the commuting relation: $x_i x_j = q_j x_j x_i$ for all i > j and $q_k x_l = x_l q_k$ for all k, l. Generalize the identity of the previous item to $(x_1 + \ldots + x_m)^n$ in this new setting.