Math 6501 - Enumerative Combinatorics I - Homework 3
 Due at $3: 00 \mathrm{pm}$ on Monday September 30th, 2019

Please indicate any source in the literature used in finding the solution to a given problem. You are encouraged to work in teams, but individual solutions must be submitted for grading and credit. If you work in teams, please indicate the name of your collaborator(s) for each problem.
Problem 1. Fix two integers m, n with $n>m$. Prove that $\sum_{k=1}^{n}(-1)^{k}\binom{n}{k} k^{m}=0$.
(Fun fact: If $n>m-\varphi(m)$, where φ is Euler's φ-function, one can show that $m \left\lvert\, \sum_{k=1}^{n}(-1)^{k}\binom{n}{k} k^{m}\right.$ in \mathbb{Z}.)
Problem 2. How many integer solutions $x_{1}+x_{2}+x_{3}+x_{4}=30$ exist with the restriction $-10 \leq x_{i} \leq 20$?
Problem 3. Let $C(n, k, s)$ be the number of k-subsets of $[n]=\{1,2, \ldots, n\}$ that contain no run of s consecutive integers. Show that

$$
C(n, k, s)=\sum_{i=0}^{\lfloor k / s\rfloor}(-1)^{i}\binom{n-k+1}{i}\binom{n-i s}{n-k} .
$$

(Hint: Recall that the number of non-negative integer solutions to $x_{1}+\ldots+x_{m}=\ell$ with $x_{i}<s$ for all i equals $\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\binom{m+\ell-j s-1}{m-1}$.)

Problem 4. (i) Show that the number of ways in which n male-female couples can be seated on a long dinner table so that no couple sits next to each other is $\sum_{k=0}^{n}(-2)^{k}\binom{n}{k}(2 n-k)$!.
(Hint: Take X to be the set of all seatings, so $|X|=(2 n)!$, and define e_{i} as the property that the i-th couple sits side by side.)
(ii) Show that also imposing that women and men must alternate seating yields $2 n!\sum_{k=0}^{n}(-1)^{k}\binom{2 n-k}{k}(n-$ $k)$! many seating arrangements.

Problem 5. (i) Let A be a finite set and consider n subsets A_{1}, \ldots, A_{n} of A. Given a subset T of $[n]$, we define $A_{T}=\bigcap_{i \in T} A_{i}$ and set $S_{k}=\sum_{|T|=k}\left|A_{T}\right|$ for each $k=0, \ldots, n$. Show that $\sum_{i=k}^{n}(-1)^{i-k} S_{i}=$ $S_{k}-S_{k+1}+\ldots+(-1)^{n-k} S_{n} \geq 0$ for all $k=0, \ldots, n$.
(ii) (Bonus) Prove the following statement: a vector $\left(S_{0}, \ldots, S_{n}\right) \in \mathbb{Z}_{\geq 0}^{n+1}$ can be realized from n subsets A_{1}, \ldots, A_{n} of a finite set A as in item (i) if and only if $\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{k} S_{i} \geq 0$ for all $k=0, \ldots, n$.

Problem 6. Show, by means of an example, that the involution used in the proof of the Linström-GesselViennot Lemma (from Lecture 10) does not work if we just choose i_{0} minimal, then the minimal j_{0} such that the paths $P_{i_{0}}, P_{j_{0}}$ intersect, and then the first common point X on $P_{i_{0}}$. What could go wrong?

Problem 7. (Properties of determinants via Lindström-Gessel-Viennot's Lemma)
(i) Show that any $n \times m$ matrix M corresponds to the path matrix between two sets $A=\left\{A_{1}, \ldots, A_{n}\right\}$ and $B=\left\{B_{1}, \ldots, B_{m}\right\}$ corresponding to the vertices of a bipartite graph G with $\operatorname{wt}\left(A_{i} \rightarrow B_{j}\right)=m_{i j}$.
(ii) Use LGV to show that $\operatorname{det} M^{T}=\operatorname{det} M$.
(iii) Given two $n \times n$ matrices M and M^{\prime}, use LGV to show that $\operatorname{det}\left(M M^{\prime}\right)=\operatorname{det}(M) \operatorname{det}\left(M^{\prime}\right)$, (Hint: Consider three sets $A=\left(A_{1}, \ldots, A_{n}\right), B=\left(B_{1}, \ldots, B_{n}\right), C=\left(C_{1}, \ldots, C_{n}\right)$ and identify M and M^{\prime} with the path matrices of bipartite graphs (A, B) and (B, C) as in item (i).)
(iv) (Cauchy-Binnet) Let M be an $n \times p$-matrix and M^{\prime} be an $p \times n$-matrix with $n \leq p$. Then

$$
\operatorname{det}\left(M M^{\prime}\right)=\sum_{|R|=n} \operatorname{det} M_{R} \operatorname{det} M_{R}^{\prime}
$$

where M_{R} is the $n \times n$ submatrix of M with columns in R and M_{R}^{\prime} is the corresponding submatrix of M^{\prime} with rows in R. (Hint: Use the same strategy as in item (ii), but now set the length of B to be p.)

