Math 6501 - Enumerative Combinatorics I – Homework 5

Due at 3:00pm on Monday October 21st, 2019

Please indicate any source in the literature used in finding the solution to a given problem. You are encouraged to work in teams, but individual solutions **must** be submitted for grading and credit. If you work in teams, please indicate the name of your collaborator(s) for each problem.

Problem 1. Consider the sequence $(a_n)_n$ defined by $a_0 = 0$, $a_1 = 1$ and $a_n = 2a_{n-1} + 3a_{n-2}$. Show that $\sum_{n=0}^{\infty} a_n x^n = \frac{x}{1-2x-3x^2}$, and $a_n = \frac{1}{4}((-1)^{n+1} + 3^n)$ for all $n \ge 0$.

Problem 2. (Counting lattice paths) For each $n \in \mathbb{Z}_{\geq 0}$, consider the set \mathcal{L}_n of lattice paths with n steps starting from (0,0) that do not self-intersect, where we allow three types of steps: N = (0,1), E = (1,0) and W = (-1,0). Let $f: \mathbb{Z}_{\geq 0} \to \mathbb{Z}$ be the counting function defined by $f(n) := |\mathcal{L}_n|$ for each n.

- (i) Check that f(0) = 1 and f(1) = 3.
- (ii) Show that for each $n \ge 2$, every path in \mathcal{L}_n ends with one of the following 5 sequences (read from left to right): (1) N, (2) EE, (3) NE, (4) WW, and (5) NW.
- (iii) Conclude that f(n) = 2 f(n-1) + f(n-2) for all $n \ge 2$.

(iv) Show that the o.g.f. for
$$f$$
 equals $\frac{1+x}{1-2x-x^2}$ and $f(n) = \frac{1}{2}((1+\sqrt{2})^{n+1}+(1-\sqrt{2})^{n+1})$ for all $n \ge 0$.

Problem 3. (Simultaneous Recurrences)

- (i) Show that $(\sqrt{2} + \sqrt{3})^{2n} = a_n + b_n \sqrt{6}$ for all $n \in \mathbb{Z}_{\geq 0}$ for suitable sequences $(a_n)_n$ and $(b_n) \in \mathbb{Q}$.
- (ii) Prove that $(a_n)_n$ and $(b_n)_n$ satisfy the simultaneous recurrences:

$$a_0 = 1$$
, $b_0 = 0$, $a_n = 5 a_{n-1} + 12 b_{n-1}$ and $b_n = 2 a_{n-1} + 5 b_{n-1}$ for all $n \ge 1$

(iii) If A(x) and B(x) represent the o.g.f. for $(a_n)_n$ and $(b_n)_n$, show that

$$A(x) = 5 x A(x) + 12 x B(x) + 1$$
 and $B(x) = 2 x A(x) + 5 x B(x)$.

- (iv) Solve for A(x) and conclude that $a_n = \frac{1}{2} \left((5 + 2\sqrt{6})^n + (5 2\sqrt{6})^n \right)$ for $n \ge 0$. Can you determine the linear recurrence satisfied by $(a_n)_n$?
- (v) Determine B(x) and find the linear recurrence and close formula for $(b_n)_n$.

Problem 4. Define the Chebyshev polynomials by $c_0(t) = 1$, $c_1(t) = t$ and $c_n(t) = t c_{n-1}(t) - c_{n-2}(t)$ for $n \ge 2$.

(i) Find the rational function with coefficients in $\overline{\mathbb{C}[t]}$ giving the ordinary generating function of $(c_n)_n$.

(ii) Prove the explicit expression
$$c_n(t) = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n-k}{k} t^{n-2k}$$
 for all $n \ge 0$.

Problem 5. (Evaluating partial sums) Consider a sequence $(a_n)_n$ in \mathbb{C} and let $(s_n)_n$ denote the associated sequence of partial sums, i.e. $s_n := a_0 + a_1 + \ldots + a_n$ for all n. From Problem 1 in Homework 4 we know that if A(x) denotes the o.g.f. for $(a_n)_n$, then $\frac{A(x)}{1-x}$ is the o.g.f. for $(s_n)_n$.

(i) Compute the o.g.f. for the harmonic series $(H_n)_n$ where $H_n := \sum_{j=1}^n \frac{1}{j}$ for all $n \ge 1$.

(ii) Show that $(H_n)_n$ satisfies the recurrence $\sum_{k=1}^n H_k = (n+1)(H_{n+1}-1)$ for all $n \ge 1$. (*Hint:* Use the previous item and the binomial series for $1/(1-x)^2$.)

Problem 6. Fix $a \in \mathbb{C}$ and let $a_{m,n} := \sum_{k \ge 0} a^k \binom{m}{k} \binom{n}{k}$. Prove that $\sum_{m,n \ge 0} a_{m,n} y^m z^n = \frac{1}{1 - y - z - (a - 1)yz}$.

Problem 7. Recall the *Delannoy numbers* $D_{m,n}$ defined in Problem 7 of Homework 1, counting paths from (0,0) to (m,n) using steps (1,0), (0,1) and (1,1).

- (i) Show that $D_{m,0} = D_{0,n} = 1$ for all m, n and $D_{m,n} = D_{m-1,n} + D_{m,n-1} + D_{m-1,n-1}$ for all $m, n \ge 1$.
- (ii) Show that the generating function $D(y,z) := \sum_{m,n} D_{m,n} y^m z^n$ equals $\frac{1}{1-y-z-yz}$.
- (iii) Use Problem 6 to conclude that $D_{m,n} = \sum_{k\geq 0} 2^k \binom{m}{k} \binom{n}{k}$ for all $m, n \geq 0$. (*Note:* this gives a different formula for $D_{m,n}$ from the one in Homework 1).