Math 6501 - Enumerative Combinatorics I - Homework 5
 Due at $3: 00 \mathrm{pm}$ on Monday October 21st, 2019

Please indicate any source in the literature used in finding the solution to a given problem. You are encouraged to work in teams, but individual solutions must be submitted for grading and credit. If you work in teams, please indicate the name of your collaborator(s) for each problem.

Problem 1. Consider the sequence $\left(a_{n}\right)_{n}$ defined by $a_{0}=0, a_{1}=1$ and $a_{n}=2 a_{n-1}+3 a_{n-2}$. Show that $\sum_{n=0}^{\infty} a_{n} x^{n}=\frac{x}{1-2 x-3 x^{2}}$, and $a_{n}=\frac{1}{4}\left((-1)^{n+1}+3^{n}\right)$ for all $n \geq 0$.

Problem 2. (Counting lattice paths) For each $n \in \mathbb{Z}_{\geq 0}$, consider the set \mathcal{L}_{n} of lattice paths with n steps starting from $(0,0)$ that do not self-intersect, where we allow three types of steps: $N=(0,1), E=(1,0)$ and $W=(-1,0)$. Let $f: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Z}$ be the counting function defined by $f(n):=\left|\mathcal{L}_{n}\right|$ for each n.
(i) Check that $f(0)=1$ and $f(1)=3$.
(ii) Show that for each $n \geq 2$, every path in \mathcal{L}_{n} ends with one of the following 5 sequences (read from left to right): (1) N, (2) EE, (3) NE, (4) WW, and (5) NW.
(iii) Conclude that $f(n)=2 f(n-1)+f(n-2)$ for all $n \geq 2$.
(iv) Show that the o.g.f. for f equals $\frac{1+x}{1-2 x-x^{2}}$ and $f(n)=\frac{1}{2}\left((1+\sqrt{2})^{n+1}+(1-\sqrt{2})^{n+1}\right)$ for all $n \geq 0$.

Problem 3. (Simultaneous Recurrences)

(i) Show that $(\sqrt{2}+\sqrt{3})^{2 n}=a_{n}+b_{n} \sqrt{6}$ for all $n \in \mathbb{Z}_{\geq 0}$ for suitable sequences $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right) \in \mathbb{Q}$.
(ii) Prove that $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ satisfy the simultaneous recurrences:

$$
a_{0}=1, \quad b_{0}=0, \quad a_{n}=5 a_{n-1}+12 b_{n-1} \quad \text { and } \quad b_{n}=2 a_{n-1}+5 b_{n-1} \quad \text { for all } n \geq 1
$$

(iii) If $A(x)$ and $B(x)$ represent the o.g.f. for $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$, show that

$$
A(x)=5 x A(x)+12 x B(x)+1 \quad \text { and } \quad B(x)=2 x A(x)+5 x B(x) .
$$

(iv) Solve for $A(x)$ and conclude that $a_{n}=\frac{1}{2}\left((5+2 \sqrt{6})^{n}+(5-2 \sqrt{6})^{n}\right)$ for $n \geq 0$. Can you determine the linear recurrence satisfied by $\left(a_{n}\right)_{n}$?
(v) Determine $B(x)$ and find the linear recurrence and close formula for $\left(b_{n}\right)_{n}$.

Problem 4. Define the Chebyshev polynomials by $c_{0}(t)=1, c_{1}(t)=t$ and $c_{n}(t)=t c_{n-1}(t)-c_{n-2}(t)$ for $n \geq 2$.
(i) Find the rational function with coefficients in $\overline{\mathbb{C}}[t]$ giving the ordinary generating function of $\left(c_{n}\right)_{n}$.
(ii) Prove the explicit expression $c_{n}(t)=\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{n-k}{k} t^{n-2 k}$ for all $n \geq 0$.

Problem 5. (Evaluating partial sums) Consider a sequence $\left(a_{n}\right)_{n}$ in \mathbb{C} and let $\left(s_{n}\right)_{n}$ denote the associated sequence of partial sums, i.e. $s_{n}:=a_{0}+a_{1}+\ldots+a_{n}$ for all n. From Problem 1 in Homework 4 we know that if $A(x)$ denotes the o.g.f. for $\left(a_{n}\right)_{n}$, then $\frac{A(x)}{1-x}$ is the o.g.f. for $\left(s_{n}\right)_{n}$.
(i) Compute the o.g.f. for the harmonic series $\left(H_{n}\right)_{n}$ where $H_{n}:=\sum_{j=1}^{n} \frac{1}{j}$ for all $n \geq 1$.
(ii) Show that $\left(H_{n}\right)_{n}$ satisfies the recurrence $\sum_{k=1}^{n} H_{k}=(n+1)\left(H_{n+1}-1\right)$ for all $n \geq 1$. (Hint: Use the previous item and the binomial series for $1 /(1-x)^{2}$.)

Problem 6. Fix $a \in \mathbb{C}$ and let $a_{m, n}:=\sum_{k \geq 0} a^{k}\binom{m}{k}\binom{n}{k}$. Prove that $\sum_{m, n \geq 0} a_{m, n} y^{m} z^{n}=\frac{1}{1-y-z-(a-1) y z}$.
Problem 7. Recall the Delannoy numbers $D_{m, n}$ defined in Problem 7 of Homework 1, counting paths from $(0,0)$ to (m, n) using steps $(1,0),(0,1)$ and $(1,1)$.
(i) Show that $D_{m, 0}=D_{0, n}=1$ for all m, n and $D_{m, n}=D_{m-1, n}+D_{m, n-1}+D_{m-1, n-1}$ for all $m, n \geq 1$.
(ii) Show that the generating function $D(y, z):=\sum_{m, n} D_{m, n} y^{m} z^{n}$ equals $\frac{1}{1-y-z-y z}$.
(iii) Use Problem 6 to conclude that $D_{m, n}=\sum_{k \geq 0} 2^{k}\binom{m}{k}\binom{n}{k}$ for all $m, n \geq 0$. (Note: this gives a different formula for $D_{m, n}$ from the one in Homework 1).

