Lectere I: Ovenrieu \& Course description
\$1.1 Oren riew:
Algbraic geminty is the stedy of solutions to preynmial equations sere a field K. (Study Geomity though Algebra of plypumials)

1) Questims of interest a techniques vary drastically depending in \mathbb{K}.
(1) $\mathbb{K}=\mathbb{Q}$, elg.extn of Q; finite fields, p-adics, function fields
$m \rightarrow$ Aritiunctic Questions (eg. solve disphantine equatisus)

- Example (Fermat) $x^{n}+y^{n}=z^{n}$ has no-nontivial solictims $\operatorname{ser} Q$. if $n \geq 3$.
- Counting rativual printon $X\left(\right.$ mer \mathbb{T}_{q}, af extr of \mathbb{Q}, p-adics, $Q(t)$, ete) \&
- Fmoing me rat'l pt \& deselop techniques to get sthees from that one.

Central problem: Weil Conjecteres (1949) on the generating function (eral zeta fenction) derived from counting pts m algeb naic varicties ore finite pields.

$$
\zeta(X, s)=\exp \left(\sum_{m=1}^{\infty} \frac{N_{m}}{m} q^{-m s}\right) \quad \begin{aligned}
& X \text { prajedise de } m / \mathbb{T}_{q} \\
& N_{m}=\# X\left(\mathbb{R}_{q} m\right)
\end{aligned}
$$

Conjectere (1) rational function of $T=q^{-s}$ (Thn by. D work (1960))
(2) Explicit functimal equation
(Thm by Grothendieck (1965))

$$
\zeta(x, n-s)= \pm q^{n \in / 2-E s} \zeta(x, s) \quad E=\text { Eulen char of } X
$$

(3) Pestricted becation of its zenoes (Thum by Deligne (1974))

Example: $X=\mathbb{P}_{\mathbb{T}_{q}}^{1}, \quad J(X, s)=\frac{1}{\left(1-q^{-3}\right)\left(1-q^{1-s}\right)}$
Proop ria a suitable cohmolagy thery.
(2) $\mathbb{K}=\mathbb{R}$, r a mal closed field (equir. by Tanski principle)

- Most used fo Applicatins. (eg CAD, Robotics)
- Main latest development: Hmotopy Continuative, a numerical unthol To compute solutions of polynomial systems ese \mathbb{R} u th finite solution sets
Ida: (1) deform systems to simpler sees to solve
(2) Tack solutives as we deform back, hoping for numerical stability

Extracted from "History citimenation" by Max Bust \& Donald Richards. Talk delivered at the Summer School in Statistics for Astronomers \& Phygriciste (16 Jun zoos)
https://astrostatistics.psu.edu/su05/max_homotopy061605.pdf

- Ansures depend in the Top logy of the mall set.

Plucker: (1834) A smooth quartic cuss in \mathbb{P}^{2} (solutions to a honogeneres egos in 3 variables of deque 4) over \mathbb{C} has exactly 28 bitangent lives

- Bitangent = line tangent to the \mathbb{C}-cere at 2 points
- Neal bitangent $=$ equation of the bitangent is defined oven \mathbb{R} (tangency pts could be complex!)
Beuthen (1873) Dree \mathbb{R}, the number defends on the Toprogy of the real curse.

Topology	4 orals	3 orals	2ur-nested orals	2 nested rall	1 oral	\varnothing
\# Real bitanyents	28	16	8	4	4	4

Example by Trot of a mol gratic with 4 ovals and its 28 mal bitangents.

Source : https://en.wikipedia.org/wiki/Bitangents_of_a_quartic\#/ media/File:TrottCurveBiTangents28.svg
(3) $\mathbb{K}=\mathbb{C}$ (r alglbraically dsed fields)

Many more Toob: algetrna, differentiol germing \& \mathbb{C}-analys is
Questims ogumetric invaiciants (dimensin, homology / chhoudopy, Euler charact,...)

- decide if singular / smooth \& "resolse" singularities (effecterely)
- becide if compact; find nice compactifications
- Can we de compse vaicties? (Primany decompsitims)
- Can we compute invariants explicitly? (Computatival Tools, eg Gröbrer basis)
- Can we classify varieties? Can we stedy families, eg m rduli spaces?
- Enemeretire questims (eg"27 Limes on smooth cubic serfaces on $\mathbb{P}_{c}^{3 "}$)
- Can we construct special vaneties?
\$1.2 Course Outline:
In this course we will fous on hanning the thery by mians of classical examples Wheneren in reed, we'll fooces on $\mathbb{K}=\overline{\mathbb{K}}$ (\& esen $\mathbb{K}=\mathbb{C}$ if necessory)

Course outline: (1) Affine Verieties (Weeks 1-3) Issue: Not cmpact!
(2) Projectire Varicties (Weeks 4-6) (Compact!)
(3) Interlude on general Thery: Sheases, Dimensin, Functionfilds, Smoothess, Resseutien of Simgulariters, Divisers, Lime Bundles, Cohurilogy, Gröbver bases (Weeks 7-11)
(4) Cure Therry (Weeks 12-15)
(5) del Pesso surfaces (Werk 16)

- Missing:Topic fron the year-long sequence: Varieties coming from Combinatorics (Future Topics conse?) (eg Tric/Trofical Vavicties)

