<u>Lecture I:</u> Overnieur & Course description

Algebraic growing is the study of solutions to polynomial equations see a field K
(Study Geometry through Algebra of polynomials)

Questions of interest a techniques very deastically depending n K.
(M = Q, edg. extr. of Q; finite fields, p-adics, function fields
mush or herituratic Questions (eq. solve displanetime equations)
• Example (Format)
$$X^{n} + y^{n} = 2^{n}$$
 has non-montional solutions over Q, if $n \ge 2$
• Counting natural points $n X$ (one Fg, digests of Q, p-adics, Q(t), stc) a
• Finding on early of a develop techniques to get others from that one.
(entered problem: Weil Conjectures (1969) on the generating function (Isreel geta
burder) deviced from counting $p = n$ algebraic writtle one from that one.
(entered problem: Weil Conjectures (1969) on the generating function (Isreel geta
burder) deviced from counting $p = n$ algebraic writtles one from that $m \times T_{\rm g}$
(x_1, s_2) = exp ($\sum_{n=1}^{\infty} \frac{N_{\rm m}}{m} g^{-Ms}$) X pojitive dg $m \times T_{\rm g}$
(x_1, s_2) = exp ($\sum_{n=1}^{\infty} \frac{N_{\rm m}}{m} g^{-Ms}$) $N_{\rm m} = \pm X(T_{\rm g}^{\rm m})$
(n deviced from counting $p = \pm g^{-NS} (The by Durck (1960))$
(s) Explaced functional equation (Then by Beather cheer of X
(s) Reducted borotion of its geness (The by Deligne (1974)))
Example: $X = \mathbb{R}^{1}$, $J(X, s) = (\frac{1}{(1-g^{-1})(1-g^{1-s})})$
Proofe via a suitable cohomology theory.
(2) $K = \mathbb{R}$, $n =$ and chosed field (equive by Tariski principle)
• Host used for hyphications, (eq. CAD, Pohotics)

Main latest development : Homotopy Continuation, a numerical method
 To compute solutions of polynomial systems over TR with finite solution sets
 Idea : (1) deform systems to simpler ones to solve
 (2) Track solutions as we deform back , hopping for numerical stability

Extracted from "Homotopy entirenation" by Max Bust & Donald Richards. Talk delivered at the Summer School in Statistics for Asternoous & Physicists (16 June 2005)

https://astrostatistics.psu.edu/su05/max_homotopy061605.pdf

. Answers defend in the Topology of the real set.

Phrecher: (1834)	A smooth g	partie anne	m P ² (solutions to a	homogeneous equis in	
3 voniables of	Leque 4) over	C has exa	.tly 28 6	tangent lines		
.Bitangent = 1	ine tangent to	the C-cur	m at 2 p	oints		
. Real bitangent	= equation »	f the Litan	gent is defi	ned over TR (tangency pts could b complex !	2
Zeuthen (1873)	Ora R, the	number def.	ends in the "	topology of the	rel curre.	
Topology	4 orals	3 orals 3	enn-nested or	als 2 mested	mals 1 anal of	

						Ŷ
# Real bitampents	28	16	8	4	4	4

https://en.wikipedia.org/wiki/Bitangents_of_a_quartic#/ media/File:TrottCurveBiTangents28.svg

\$ 1.2 Course Outline:

In this course we will focus a harning the theory by means of classical examples Whenever in need, we'll bocas on IK = IK (8 even IK = C if necessary)

• <u>Ilissing</u>: topic from the year-lung sequence : Varieties coming from Combinatorics (Future Topics course?) (eg Tozic / Tropical Varieties)