Lettere III: I hade of parieties, Basic duality & included le decompositions
Recall:
$$V \in A_{k}^{m}$$
 is an algebraic selencicity if $V = V(S) = I_{S} \in K^{m}$; $F_{(S)} = 0$ 4FeS
Lemma: (1) $V(S_{1} \cap S_{2}) = V(S_{1}) \cup V(S_{2})$ for $S_{1}, S_{2} \subseteq K[K_{1}, \dots, K_{n}]$
(2) $(V(S_{1}) = V(S_{2})$ is the case assume S is finite
(3) $\beta = V(S_{1})$; $H^{*} = V(0)$.
(4) $V(S) = V(S_{2})$ so we can assume S is finite
(3) $S_{1} \subseteq S_{2} \implies V(S_{1}) \supseteq V(S_{2})$ ("inclusion devesting")
Cooldary: Varieties are closed at J_{22} in tegridage (Earistic Eq.)
TODNY: Frees M ideals constanted from other selencities of M^{*} .
5(. I hade from affine varieties:
 $I(W) = J F \in K(K_{1}, \dots, K_{n}]$: $F(S_{1} = 0$ $\forall S \in V \subseteq K(K_{1}, \dots, K_{n}]$
(This makes some even : $f(W)$ is at an affine variety)
Proposition 1 : $T(W)$ is an ideal of $K_{1} \times J$
(1) $O \in I(W)$: $O_{(S)} = O$ $\forall_{S} \in V \times$
(2) $F, g \in I(W)$ \Longrightarrow $F + g \in I(V)$
 $F_{(S)} = O$ $4_{S}(S_{1}) = O$ $4_{S} \in W$ by def , so $(F + g)_{(S)} = F_{(S)} + S_{(S)} = 0 + 0 = 0$
(2) $F \in I(W)$, $h \in K_{1} \times J$ is $h \in F_{1}(W)$
 $F_{(S)} = O$ $4_{S}(W)$, $h \in K_{1} \times J$ is $h \in F_{1}(W)$
 $F_{(S)} = O$ $4_{S}(W)$, $h \in K_{1} \times J$ is $h \in F_{1}(W)$
 $F_{(S)} = O$ $4_{S}(W)$, $h \in K_{1} \times J$ is $H \in F_{1}(W)$
 $F_{(S)} = O$ $4_{S}(W)$ is O $(hF)_{(S)} = h_{(S)} + S_{(S)} = 0 + 0 = 0$
 W_{1} have the analogs of Lemmas 1 g_{2} for $g(1, 1)$.
 U have the analogs of Lemmas 1 g_{2} for $g(1, 1)$

•
$$I(w_1) + I(w_2) = \langle \gamma - x^2 \rangle + \langle \gamma \rangle = \langle \gamma, x^2 \rangle \neq \langle \gamma, x \rangle.$$

The results from \$1.1882.1 yield the following Basic Duality for a fine subvar. of 1A

Noxt, we discuss how I & V interact with each other

Proposition 2: If
$$W \subseteq A^{n}$$
 is a subvariety, then $V(I(w)) = W$.
Broof: (2) is easy to click: If $a \in W$, then $f(a_{1}=0 \quad \forall f \in I(w))$
by hypinitian of $I(w)$, meaning $a \in V(I(w))$
(c) is also easy to check. Since W is algebraic, then $W = V(S)$
for a finite set $S = if_{1}, \dots, f_{K}$? of polynomials in $K_{[K_{1}, \dots, K_{N}]}(broblemy | s|.1)$
We have $S \in I(w)$ by definition of S , so by Lemma 1 we have
 $W = V(S) \supseteq V(I(w))$

Corollary 1. For evenieties
$$W_1 \otimes W_2$$
 we have $W_1 \subseteq W_2 \cong I(W_1) \supseteq I[W_2]$
 \underline{Proof} : Combine Proop 1 52.1 & Lemma 3.51.1
Prooposition 2: For any ideal of of $K(x_1, ..., x_n]$ we have $I(V(\mathcal{X})) \supseteq \mathcal{X}$
 \underline{Proof} : Pick any $a \in W = V(\mathcal{X}) \ a f \in \mathcal{X}$. Then, $f_{(a)} = 0$ & so $f \in I(V(\mathcal{X}))$
 I_n particular, $\mathcal{X} \subseteq I(V(\mathcal{X}))$.

$$\begin{split} & \bigwedge \quad \text{This is ust a 1-to-1 conceptedence even if $K = \overline{K}$ (iduals an instructed)
 $\underline{E_X}$: $A' = V(h \times f) = V(h \times f)$
 $\underline{Lemma(f)}$, $\overline{L}(W)$ is a indical idual for any $W \leq A^{N}$.
(J is radical if field f with $f'' \in J$ for sum $N \Rightarrow F \in J$)
 \underline{Sumf} : IF $f'' \in \overline{L}(W)$ then $(f'')_{(2)} = (F_{(2)})^{V} = 0$ $\forall \leq \in W$ But
K is a field, so this force $F_{(2)} = 0$ $\forall \leq \in W$ But
K is a field, so this force $f_{(2)} = 0$ $\forall \leq \in W$ are $\overline{L}(V(\partial C)) \geq \overline{JoC}$.
 \underline{M} Induction can be struct!
 $\underline{Example}$: $\partial C = \langle 1+X^{2} \rangle \leq \overline{K}[X]$ Then $V(\partial C) = \phi$ ($K = \mathbb{R}$)
 $a = \overline{L}(V(\partial C)) = \overline{L}(\phi) = \overline{K}[X] \neq \overline{V(1+X^{2})} = \langle 1+X^{2} \rangle$
 $\otimes 1+X^{2}$ is square fue!
 \overline{I} in $K = \overline{K}$ we can do better!
Hilbert's Nullstellensets: IF $K = \overline{K}$ a $\mathcal{X} \leq K[X_{1}, ..., X_{n}]$ is an ideal. Here
 $(Strug versin) = \overline{L}(\psi)$, we get :
 $\overline{V(a)} = \phi \implies a = (1) = K(X_{1,...,X_{n}]}$$$

Remark: We'll see that Weak Hilbert Nullstellensatz => Strong Hillert Nullstellensatz Corollary 3: IF IK = TK, affine subvarieties are in 1-to-1 corresp. To radical ideals under the mays I(-) ~ V(-).

Q: What to do about the basic duality when K is an arbitrary field?

<u>A</u>: The Theory of Schemes (Hath 7142) will ense by enlarging the Germitric side to match all ideals (tautologically!) . Ideals will conspond to "affine schemes" . Schemes will be obtained by sleeing affine schemes Local picture a Commutative Algebra; Global picture a Homological Alg.

Next week, we'll discuss a proof of Hilbert's Nullstellen satz (2 statements) We'll need some commutative Algebra.