Lecture IV: Invaluable Decomposition of Variation
Trimany Ideals of Wortherian commutative ranges
Freak Baric duality in Algebraic Geometry

$$\begin{bmatrix}
GEORETRY & I & Algebraic Geometry \\
Subvariation & V & addial ideals & I \\
Subvariation & V & addial ideals & I \\
W & A_{K}^{m} & V & addial ideals & I \\
W & A_{K}^{m} & V & addial ideals & I \\
W & A_{K}^{m} & V & V \\
W & V & V \\
W & V & V \\
W & V \\
W & V & V \\
W & V$$

This infinite capacity are stabilized if the statement fails for V. Taking
$$I(-)$$
 we get an ascending chain of ideals :
 $I(V) \subseteq I(V_1) \subseteq I(V_2) \subseteq \cdots$
in the Northenian ring $(K_{\{V_1\}}, \dots, K_n)$. So this sequence must stabilize.
Thus $\exists N$ st $\forall K \geq N$ $I(V_K) = I(V_{K+1})$
Taking $V(-)$ again a using Proportion 5, we conclude
 $V_{K=} V(I(V_K)) = V(I(V_{K+1})) = V_{K+1}$ $\forall K \geq N$
This instructed per instruction (K)
Underges: Other to detect inside inside decompositions in practice?
For G we have an easy characterizatin.
Proposition 1: A unity $W \leq A^n$ is inside acceled (i) is a prime ideal
Starf We prove both implications
 (i) Prick $f, g \in K(K_S)$ with $fg \in I(W)$.
Then $W = V(CI(W), F>) \cup V(CI(W), g>)$ will give a decomposition
 $IF f, g \notin I(W)$, this decomposition would be unitarial, instability on
 (i) We argue by introduction a assume $W = W_1 \cup W_2$ is a numerical
decomposition of W . In particular, we know that $W_1 \notin W_2 \notin W_1$. Equivalently,
by constraing $I \otimes I$, we can $I(W_1) \notin I(W_2) \notin I(W_1)$. So $\exists F \in X_1, X_2 \in X_1$
 K_2
 K_3
 K_4
 K

For (2) we will translate a decomposition of W into a decomposition of the (nadical): deal I(w) as an intersection of prime ideals of IK(X, ...-Xn] Next, we generalize this to arbitrary ideals of Northerian ammutative rings, uplacing prime ideals by primary ones.

Ez. Saimany ideals
For today we fix R to be a Northerian commutative sing (eg 1K(x1,..., xn])
Definition: An ideal
$$q \subseteq R$$
 is called primary if it is proper and the
following andition holds:
"IF a, b \in R satisfies a b $q \neq q \implies b^m \in q$ for some $m \ge 1^{tr}$
(equir, $b \in Tq$)
The definition is NOT symmetric in a eb.
Observation: Equivalently, every grow divisor of R/q is nilpotent (this are is symmetric!)
Lemma 1: IF $q \subseteq R$ is primary, then Tq is a prime ideal.
Dreaf Pick a, b \in R with a b $\in B := Tq$. Thue, $\exists m \ge 1$ with (ab) $=a^m b^m \in q$
By the definition of primary we have either $a^m \in Q$ or $b^m \in Tq$, so $b \in Tq$.

Observation: The difference between of & P= Top is algebraic & highlights the difference between a fat point (a point with multiplicity) us the point neurod as a set. This will be inclement for affine varieties (all our ideals will be radical) but it will play a role in scheme theory.

$$\frac{E \times AMPLES:}{UR} = \|K[x]\| = \mathcal{K} = (X^{n}) \quad \text{Thun, } \mathcal{K} \text{ is primary}$$

$$\frac{UFP}{UFP} \quad \frac{VFP}{UFP} \quad \frac{VFP}{VFP} \quad \frac{VFP$$

Indusion: If a \$ (X") we have be for

D

(c)
$$R = K[x,y] + q = (x,y^2)$$
. Thus, q is primery but set a proce
of a prime ideal.
 $SF/. Easy to be $S = (x,y^2) - Iq^2$ is maximal \Rightarrow prime
 $S^2 = (x^2, y^2, x_3) \notin q \notin q S$.
 $sg S^2 + y^4 q$
If $q = 2t^m$ for some prime ideal R then $Iq^2 = (2t^m = R \text{ is } 2t = R)$.
• In what remains, we dered that q is primery. Pick $F,g \in K(x_3)$ with $F,g \in q$
Write $F = a_0 + x F_1(x_3) + y F_2(g)$ with $a_0, b_0 \in K$.
 $g = b_0 + x g_1(x_3) + g g_2(g)$ with $a_0, b_0 \in K$.
 $g = b_0 + x g_1(x_3) + g g_2(g)$ with $a_0, b_0 \in K$.
 $g = b_0 + x (b_0 F_1(x_3)^2 + b_0 F_2(y)) = (x,y^2)$ (A)
Write $f \neq q$ means $a_0 \neq 0$ is $(a_0 = 0 \text{ is } b_0(y^2))$ (A)
 $H = g (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$ (A)
 $H = g (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$ (A)
 $H = g (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$ (A)
 $H = g (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$ (A)
 $H = g (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$ (A)
 $H = g (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2) = K(y)$
 $H = g (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2) = K(y)$
 $T = g (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2) = K(y)$
 $T = g (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2) = K(y)$
 $T = g (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$
 $S = F_q (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$
 $S = F_q (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$
 $S = F_q (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$
 $S = F_q (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$
 $S = F_q (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$
 $S = F_q (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$
 $S = F_q (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$
 $S = F_q (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$
 $S = F_q (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$
 $S = F_q (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$
 $S = F_q (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$
 $S = F_q (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$
 $S = F_q (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$
 $S = F_q (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$
 $S = F_q (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$
 $S = F_q (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$
 $S = F_q (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$
 $S = F_q (a_0 g_2(y) + b_0 F_2(y)) = (x,y^2)$
 $S = F_q (a_0 g_2(y) + b_0 F_2(y)$$