\$1. More on inducible ideals:

• To build primary decompositions of ideals, we'll take a detocer. More precisely, we'll: (1) define inclucible ideals.

(2) construct "inclucible dump." of ideals (Noetherianness is key here!)

(3) show that ineducible ideals are primary.

\$2 Inerducible ideals;

Un next mults quarantees "ineducible decompositions "of ideals exist. Theorem I : Assume R is a Northenian commutative ring. Then, any ideal of R is a frimite intersection of ineducible ideals.

<u>Snoof</u>: We argue by intradiction & assume the set: $\Sigma' = \zeta \in \mathbb{R}$ ideal : it is not a fractic intersection of irred. ideals f is non-empty. Since R is Northerian, Σ' must have a maximual element wrt indusion. Say $\mathcal{X} \in \Sigma'$ is such a next element.

Since
$$\mathcal{K} \in \mathbb{Z}$$
, we know that it connect be involved by so we can write it as
 $\mathcal{K} = \mathcal{K} \cap \mathcal{K}$ by two ideals \mathcal{K} , \mathcal{K} with $\mathcal{K} \subseteq \mathcal{K}$ is $\mathcal{K} \subseteq \mathcal{L}$.
Since \mathcal{K} was maximal in \mathbb{Z} , thus \mathcal{K} , $\mathcal{K} \notin \mathbb{Z}$. Thus we can decompose \mathcal{K} if $\mathcal{K} = \mathcal{K}_1 \cap \cdots \cap \mathcal{K}_r$ $\mathcal{K}_1 = \mathcal{K}_2 \cap \cdots \cap \mathcal{K}_r$ $\mathcal{K}_1 = \mathcal{K}_1 \cap \cdots \cap \mathcal{K}_r$ $\mathcal{K}_1 = \mathcal{K}_1 \cap \cdots \cap \mathcal{K}_r$ $\mathcal{K}_1 = \mathcal{K}_1 \cap \cdots \cap \mathcal{K}_r$.
This gives a decomposition of $\mathcal{K} = \mathcal{K}_1 \cap \cdots \cap \mathcal{K}_r$, so $\mathcal{K} \notin \mathbb{Z}$.
(atradiction! Conclusion: $\mathbb{Z} = \mathcal{K}$, one wanted to show. \mathbb{D}
To finish, we need to show the reliably of (3):
Lemma 3: Involvedue (deals one primary (deals, if \mathbb{R} is also an ined.
Glaad in the Northerian Commutative ring \mathbb{R} . In addition, $\mathcal{K} \subseteq \mathbb{R}$ is also an ined.
(deal in the Northerian Commutative ring \mathbb{R} . In addition, $\mathcal{K} \subseteq \mathbb{R}$ is primary iff (0) $\in \mathbb{R}$
 \mathcal{R} is primary. Thus, it is primary to prime the stational for (o) when it's involvedue.
 \mathcal{R} is a $\mathcal{K} \subseteq \mathbb{R}$ is also on the chain of ideals :
 \mathcal{R} is not consider the chain of ideals :
 \mathcal{R} is not consider the chain of ideals :
 \mathcal{R} is Northerian, the ascending daim (any stabilizes , so \mathbb{R} is also ost
 \mathcal{A} is $\mathcal{K} = \mathbb{R}$ is $\mathcal{K} = \mathcal{K} = \mathcal{K} = \mathcal{K}$.
 \mathcal{R} is Northerian, the ascending daim (any stabilizes , so \mathbb{R} is no ost
 \mathcal{K} (b'') = \mathcal{K} is $\mathcal{K} = (ab) = |\mathcal{D}|$
 \mathcal{R} is prime the indexin (\mathbb{P}) field $\mathbb{X} \times \mathbb{R}$ (b'') $\mathcal{N}(\mathbb{R})$.
 \mathcal{R} (b) and the indexin (\mathbb{P}) field $\mathbb{X} \in \mathbb{R}$ is \mathcal{R} if $\mathcal{R} = \mathcal{R}$ is \mathcal{R} if $\mathcal{R} = \mathcal{R}$.
 \mathcal{R} is $\mathcal{R} = \mathcal{R}$ is $\mathcal{R} = \mathcal{R}$ in $\mathcal{R} = \mathcal{R}$.
 $\mathcal{R} = (b^{n+1}) = \mathcal{R} = \mathcal{R} = \mathcal{R} = \mathcal{R} = \mathcal{R}$.
 $\mathcal{R} = (b^{n+1}) = \mathcal{R} = \mathcal{R} = \mathcal{R} = \mathcal{R}$.
 $\mathcal{R} = (b^{n+1}) = \mathcal{R} = \mathcal{R} = \mathcal{R} = \mathcal{R} = \mathcal{R}$.
 $\mathcal{R} = \mathcal{R} = (b^{n+1}) = \mathcal{R} = \mathcal{R} = \mathcal{R}$.
 $\mathcal{R} = \mathcal{R} = \mathcal{R$

- . Since (o) is ineducible by assumption $a(a) \neq (0)$ by hypothesis, we include that $(0) = (b^n)$ is x=0 as we wanted to show.
- brollang 1: We can decompose any ideal as a printe intersection of primary ideals with different radicals.
- BF/ Combine Theorem 1 & Lemma 3 to build the decomposition. Group together those primary ideals with the same radical via Proposition: 1 to get the second part of the statement.
- Fr radical ideals we get: <u>Corollary 2.: Every radical ideal is a finite intersection of prime ideals</u>
- <u>Remark</u>: The construction for $K(x_1,...,x_n)$ & power series rings is due to Lasker (1905) It uses induction on a complicated eliminations. The Statement and proof for any Noetherian comm. ring Liscussed above is much channer. It is due to E Noether (1921).

Proof: (1) fillows from any inclusible decomp of & (Theorem 1 \$3.2)
(2) and from growping together primary ideals featured in (1) with the same
radical (Proposition 1 \$4.1).
(3) is obtained from (1) by removing reducedant
$$f_{1}$$
's on (RHS)
Definition: The est $\{8_{1}, \ldots, 8_{r}\}$ is called the set of Accordiated primes of δz . We
denote it by Accord (δz)
Remark. The construction of Accordiated primes of δz . We
benete it by Accord (δz)
Remark. The construction of Accord(δz) is independent of the minimal decomp,
but this is NOT obvious! We'll see it is \$5.2
Use theig we can show its the minimal primes over δz always lie in Accord(δz)
Definition: Given δz ideal a B prime ideal with $\delta z \leq B$, we way is a
minimal prime of δz if $B = \delta z$ or if δz is not prime as $f = \delta''$ prime
with $\delta z = \delta' \leq B$. We write $Hin(\delta z)$ for the set of minimal primes of δz .
Use rest result ensures $Hin(\delta z)$ is finite.
Lemma 4. For any profer ideal δz of a Nactherian commutative ring R we have

Min (dc) = Assoc (dc) <u>Broof</u>: Next time.

Corollary 3: The set Min (or) is finite Note: We are not using that Assoc (dr) is independent of the minimal primary decomposition of dr, just that it is finite for any such decomposition.