Lecture VI: Associated primes of ideals, uniqueness of minimal primary comp.
Fix $R=N$ retherian commutates ring
Thurem: Let R be a Nertherian commutates ring $\Delta \alpha \subseteq R$ a poofter ideal. Then $\exists q_{1}, \ldots q_{r}$ primary ideals (so, proper) such that
(1) $\quad a=q_{1} \cap \ldots \cap$ of r $^{(\text {(2) }} \quad$ (primary decamp)
(2) $\nabla_{1}=\sqrt{q_{1}}, \ldots, \nabla_{r}=\sqrt{q_{r}}$ are all distinct primes.
(3) [Minimality] The intersection in (1) has no incelevant terms., that if $\forall j=1, \ldots, r \quad q_{j} \not \supset \bigcap_{i \neq j} q_{i} \quad\left(\right.$ no q_{j} cam be omitted from (1))
Name: I I_{1}, \ldots of Ir $_{r}$ are called primary components of or for this decomposition.
Next goal: (1) charaderige primary ideas in the minimal decomposition
(2) analyse possible uniqueness on either O_{i} 's or γ_{i} 's.

Special Lase: x prime Then $\underset{\text { prime }}{ }=q_{1} \cap \ldots \cap \mathscr{f}_{r}$ gives $q_{i} \subseteq g$ pos me i by pine avoidance. Since $x \subseteq q_{i}$ we get $a=q_{i}$ So a minimal primary decomposition has $r=1$.

E1. Assriated primes a minimal primes:
Definition: The set $\left\{\gamma_{1}, \ldots\right.$, Pr $\left._{r}\right\}$ is called the est of Associated primes of or. We denote it by Assoc (2)
Remeat. The construction of Assoc (x) is independent of the minimal decamp, but this is NOT obvious! We'll see it in $\$ 5.2$

One thing we can show is the minimal primes ores \mathscr{O} always lie in Assoc (OC).
Defiritim: fires x ideal \& P prime ideal with $r \subseteq P$, we say is a minimal prime of x if $P=\pi$, π if r is Not prime \& $\nexists p^{\prime}$ pieme with $x \subset P^{\prime} \subseteq P$. We write Min (x) for the set of minimal pines of x.

- Our next result ensures $M_{i n}(2)$ is pinite.

Proposition 1: Fo any proper ideal or of a Necthecian cmmutatiese ring R we hare

$$
\operatorname{Min}(x) \subseteq \operatorname{Assoc}(\theta)
$$

Proof: Write a minimal primary decomposition of or (Three 2 55.2)

$$
o=q_{1} \cap \ldots \cap q_{s} \subseteq \wp_{p \text { mim }}
$$

- Prime avoidance says $\exists i=1, \ldots, r$ with of $\exists_{i} \subseteq P$ (*)

C Recall: Induction on r educes Prime A widance to the following statement :

$$
" b \cap \zeta \subseteq \gamma, b \& \zeta \text { ida } \Rightarrow b \subseteq 8 \pi \zeta \subseteq 8 "
$$

3F/ By contradictim. Assume $\exists b \in b, 8, c \in \xi, 8$. Then, bic $\in b . \xi \subseteq b \cap \zeta \subseteq P$ but P is prime a $b, c \notin P$ Contradiction!

- Taking radicals in $(*)$ gives $\sqrt{q_{i}}=\gamma_{i} \subseteq \sqrt{8}=8 \quad \& \quad x \subseteq \sqrt{a} \subseteq \gamma_{i} \subseteq 8$ Since P is prime a minimal over ore, then me of the following holds:
(1) $P=x$, or
(z) O is not pine \& so $P_{i}=P$.
- If (1) wolds, then $\begin{aligned} x=\sqrt{x}=\sqrt{q_{1} \cap \cdots \cap q_{r}} & =\sqrt{q_{1}} \cap \cdots \cap \mid \overrightarrow{q_{c}} \\ & =\end{aligned}$
$x=\beta \geq P_{1} \cap \ldots-\cap P_{r}$. By prime avoidance $\exists_{j}=1, \ldots r$ with $P_{j} \subseteq x$
Since $\alpha \subseteq q_{j} \subseteq P_{j}$ by constmectiv, we get $x=P=P_{j} \in A \operatorname{ssoc}(x)$.
Thees, from (1) $\Omega(2)$, we get $\gamma \in \operatorname{Assoc}(\theta)$ i
Corollary 1: The minimal primes of x appear on any minimal primary decomposition as radicals of some primary compreents

Definition: The set A ssa $(x) \backslash \operatorname{Min}(x)$ is called the set of embedded primes of x (Thy correspond to "embedded compments" of affine varieties)

Ez Uniqueness of minimal primary components:
Definition: W_{l} say a primary compment q of θ is minimal if $\sqrt{\mathscr{q}} \in M_{\operatorname{in}}(\mathbb{O})$.
Theorem 1: Fix an ideal or of a Noctherian commutative ring R \& a minimal primary decompsitim $r=q_{1} \cap \cdots \cap \mathscr{q}_{r}$. If $\sqrt{q_{j}} \in \Pi_{\text {in }}(r)$, then \mathscr{q}_{j} is uniquely determined by O (4 thee features in any miminual primary decamp of α). Or next result will be easeful to parve Thareml.
Lemma 1: $F\left(x\right.$ q, of 2 primary compments of an ideal $a\left(\right.$ so $\left.P:=\sqrt{G} \neq \sqrt{Y^{\prime}}\right)$
If $\gamma \in \operatorname{Min}(\alpha)$, then $q^{\prime} \nsubseteq P$.
Boo: By contradiction: If $q^{\prime} \subseteq p \Rightarrow x \subseteq q^{\prime} \subseteq \sqrt{q^{\prime}} \subseteq \sqrt{8}=8$, so
(1) Q is pine so $q_{=} q^{\prime}=x$, which camus happen,
or (2) a is not pine \& $\sqrt{q^{\prime}}=8=\sqrt{q} \quad$ Contradiction!

1) The statement can fail if $\gamma \notin \operatorname{Min}(\alpha)$ (see HW 2 Problem 8)

Proof of Thurem 1: Write $P_{l}=\sqrt{q_{l}} \forall \ell$.
Assume $M_{i n}(\pi)=\left\{P_{1}, \ldots, P_{k}\right\}$ (if not, urdu the q 's)
Given $i=1, \ldots, k$ we want to give a choracterizatim of \tilde{f}_{i} in terms of $\alpha_{4} \mathcal{P}_{i}$. We will need to do some localization away hum γ_{i}.
We simplify notatim \& write $\mathscr{q}_{i} \& P:=P_{i}$.

- Since P is prime , $S=R-P$ is a multeplicatively dosed set in $R\left(\begin{array}{l}\quad 1 \in S \\ -a, b \in S \\ \Rightarrow a b \in S\end{array}\right)$
\Rightarrow We can consider the loralisatim $\left.S^{-1} R=3 \frac{r}{s}: r \in R, s \in S\right\} / \sim$
Here: $\frac{a}{s} \sim \frac{a^{\prime}}{s^{\prime}}$ if $\exists s^{\prime \prime} \in S$ with $s^{\prime \prime}\left(s^{\prime} a-s a^{\prime}\right)=0$.
- $S^{-1} R$ is a ring with speciations molded in those in Q.
- We have a ring homomorphism $j: R \longrightarrow S^{-1} R$ (the loralezatim).

$$
r \longmapsto \frac{r}{1}
$$

Lemma 2 below gives the desired characterization for of as $j^{*}\left(s^{-1} x\right)$. 口
Lemma 2: For $8, q$ \& x as above we here $q=j^{*}\left(S^{-1} \partial\right)$
Poof By construction, $j^{*}\left(s^{-1} a\right)=\{r \in R: s c \in x$ fr some $s \in S\}$ We prose the statement by a double inclusion:
(e) Pick $a \in j^{*}\left(S^{-1} x\right) \subseteq j_{l}^{*}\left(S^{-1} q\right) \Rightarrow \exists t \in S$ such that $a t=t a \in \mathcal{I}$.

$$
x^{\imath} \subseteq q
$$

Since q is primary this gives either $a \in q$ or $t \in \sqrt{q}=8$.
But $t \in S$ mans $t \notin P$, so this fries $a \in$ of
(c) By Lemma 2 we know that for any $q_{t} \neq q$ we have $q_{t} \nsubseteq 8$. In particular: $S^{-1} q_{t}=S^{-1} R$

Exercise
As a consequence: $s^{-1} x=s^{-1}\left(q_{1} \cap \ldots \cap q_{r}\right) \stackrel{\downarrow}{=} s^{-1} \mathscr{q}_{1} \cap \ldots . \cap s^{-1} q_{r}$

$$
\begin{aligned}
& =\left(S^{-1} R\right) \cap \cdots \underset{i^{+h} \text { spot }}{\cap S^{-1} \mathscr{f} \cap \cdot \cap S^{-1} R}=S^{-1 q} . \\
& \Rightarrow j^{*}\left(s^{-1} x\right)=j^{*}\left(s^{-1} \not q\right) \geq \underset{b}{q} \text {. } \\
& \text { alurays the! }
\end{aligned}
$$

! The proof of Lemma 2 tails if $P \notin M_{i n}(\theta C)$ because Lemma l can tail.
\$3. Associated Primes:
Theorem 2: Assoc (X) is independent of any choice of miminual primary decomposition of the ideal or.
To pron the statement we need the following auxiliary result:

Lemma 3: Fix a commutative ring R a a primary ideal \mathcal{Q} in R. Write $B=\sqrt{\mathscr{q}}$. Fr $x \in R$ we have:
(1) $x \in q \Leftrightarrow(q: x)=R$
(2) $x \notin \phi \Rightarrow(\phi: x)$ is primary $\& \sqrt{(q: x)}=P$.
(3) $x \notin \gamma \Rightarrow(\phi: x)=$ of.

Here $(q: x)=\{a \in R: a x \in q\}$
Proof: (1) is by definition of $(q: x)$ be cares $i \in(q: x) \Leftrightarrow x=1 \cdot x \in$ of.
(3) We prove (\subseteq) since $q \subseteq(o f: x)$ is dewars valid.

Pick $a \in(q: x)$ ie $a x \in \mathcal{q}$. Since q is primary \& $x \notin \sqrt{q}$ wee have $a \in q$.
(2) Wee first show that $\sqrt{(G \mid: x)}=P$ by double inclusion:
(ב) $q \subseteq(q: x)$ so $\sqrt{q}=p \subseteq \sqrt{(q: x)}$.
(c) Pick $y \in(q: x)$ so $x y \in$ of. Since $x \notin$ a of is primary, we have $y \in \sqrt{G_{0}}=\gamma$. Conclude $(q: x) \subseteq P$.
Next, we cluck $(q: x)$ is primary. By (1) we know it is a paper ideal of R.
Pick $a, b \in R$ with $a \notin(q: x)$ \& $a b \in(q: x)$. Then, $a x \notin Q$ but $a \times b \in q$
Since of is primary, we git $b \in \sqrt{\mathscr{q}}=8=\sqrt{(q: x)}$ as we wonted.

- The proof of Thisum 2 is a direct consequence of the following characterization of Ass $(\theta)=\left\{B_{1}, \ldots, \operatorname{Br}\right\}$
Prupsitim 2: given a minimal primary decamp of θ with assoc-primes $\left\{P_{1}, \ldots, P_{r}\right\}$ we have $\left.\quad 38_{1}, \ldots, P_{r}\right\}=\{\sqrt{(a: x)}: x \in R \& \sqrt{(a: x)}$ is a prime ideal $\}$ depends in the min
primary dicmpsition
indy cent of the mim primary decomprition
Proof: Write a minimal pumary decomprition if X

$$
a=q_{1} \cap \ldots \cap q_{r} \quad \text { with } \quad \sqrt{q_{i}}=\gamma_{i} \text {. }
$$

N site that $\sqrt{(x: x)}=\sqrt{\left(q_{1} \cap \cdots \cap q_{r}: x\right)}=\bigcap_{f=1}^{r} \sqrt{\left(q_{j}: x\right)}$
candy $\begin{aligned} & \delta=1 \\ & \text { ancacise }\end{aligned}$
By Lemma 3 we have 2 options if each $\sqrt{\left(q_{j}: x\right)}= \begin{cases}1 & \text { if } x \in q_{j} \\ \theta_{j} & \text { else }\end{cases}$
Writing the non-tivial terms in (RHS) of (*) we get $\sqrt{(\alpha: x)}=\bigcap_{j=1}^{k} \gamma_{i j}$
Next, we show the double inclusion of the sits in the statement:
(ב) If $P=\sqrt{(\alpha: x)}$ is prime a $\mathcal{P}_{\text {Rime }}=\bigcap_{j=1}^{k} P_{i j}$. Pure avoidance says $P \supseteq P_{i j}$ for smej Since $\bigcap_{j=1}^{K} \nabla_{i j} \subseteq \gamma_{i j}$ we get $\gamma=\gamma_{i j}$ so it lies in the (LHS) of (x)
(〔) Pick $8=P_{j}$ then as $q_{j} \not p \bigcap_{i \neq j} q_{i}$ (by the minimality of the decamp.) we can pick $x \in \bigcap_{i \neq j} q_{i} \backslash q_{j} \quad$ Then:

$$
\sqrt{(a: x)}=\bigcap_{i=1}^{r} \sqrt{\left(q_{i}: x\right)}=\sqrt{\left(q_{j}: x\right)} \cap \bigcap_{i \neq j} \underbrace{\sqrt{\left.q_{i}: x\right)}}_{=R \text { by Lemma } 3(1) \text { since } x \in q_{i} \text { bo } i \neq j}=\sqrt{\left(q_{j}: x\right)} \stackrel{p_{j}}{ }
$$

Conclusion: P_{j} has the desired from or this choice of x, so P_{j} is in the (RHS).
In HWZ, weill have examples of primary decomporitims.

