Fix
$$R = Nachherian commutative ring$$

Thuren: Let R be a Northerian commutative ring A $A \subseteq R$ a proper ideal. Then
 $\exists q_{1}, \ldots, q_{r}$ primary ideals (so proper) such that
(1) $dt = q_{1}^{2} \cap \cdots \cap \partial q_{r}^{2}$ (primary decomp)
(2) $B_{1} = I q_{1}^{2} , \ldots, B_{r} = V q_{r}^{2}$ are all distinct primes.
(3) [Himmedity] The intersection in (1) has no incultrant terms, that if
 $\forall j=1, \ldots, r = q_{j}^{2} \neq_{j}^{2} = (no q_{j}^{2} can be omitted from (1))$
Name: $\vartheta_{1}, \ldots, \vartheta_{r}^{2}$ are called parmary comprised of ϑ for this decomposition.
Next goal: O characturize primary ideals in the minimal decomposition
@ amalyze possible uniqueness on either q_{i} 's or ϑ_{i} 's.
Special case: ϑ prime Then $\chi = q_{1}^{2} \cap \cdots \cap \vartheta_{r}^{2}$ gives $q_{i} \subseteq \vartheta$
for some i by prime avoidance. Since $\partial t \subseteq q_{i}$ we get $\partial t = q_{i}$
So a minimal primary decomposition has $r=1$.

Une thing we can show is the minimal primes over H always lie in Assoc(OC). Definition: Given H ideal & B prime ideal with $\partial t \subseteq B$, we say is a <u>minimal prime of ∂t </u> if $B = \partial t$, ∂z if ∂t is NOT prime & $\overline{A}B'$ prime with $\partial t \subseteq B' \subseteq B$. We write $Hin(\partial t)$ for the set of minimal primes of ∂t . - Our next result ensures Min(de) is finite.

Proposition 1: For any proper ideal & of a Northerian commutative ring
$$R$$
 we have
 $Min(\partial t) \subseteq Assoc(\partial t)$

Sz Uniqueness of minimal primary components:

Definition: We say a primary component of of the is minimal if $I_{\mathcal{T}} \in \operatorname{Hin}(\mathcal{O} C)$. <u>Theorem 1</u>: Fix an ideal \mathcal{X} of a Northerian commutative aring \mathbb{R} & a minimal primary decomposition $\mathcal{X} = \mathcal{J}_{1}, \cap \cdots \cap \mathcal{J}_{r}$. If $J_{\mathcal{T}} \in \operatorname{Hin}(\mathcal{X})$, then \mathcal{J}_{j} is uniquely determined by \mathcal{X} (a thus features in 'any minimal primary decomposite). Our next result will be useful to passe Theorem 1.

Lemma 1: Fix
$$\mathfrak{P}$$
, \mathfrak{P}' z primary components of an ideal of (so $\mathcal{B} := \sqrt{\mathfrak{P}} \neq \sqrt{\mathfrak{P}}'$)
IF $\mathcal{B} \in \operatorname{Hin}(\mathcal{O}C)$, then $\mathfrak{P}' \notin \mathcal{B}$.

$$\frac{3noof}{1}: By contradiction: IF q' \subseteq B \implies \delta x \subseteq q' \subseteq \overline{0q'} \subseteq \overline{10q'} \subseteq \overline$$

or
(2) OL is not prime &
$$\sqrt{q_1} = 8 = \sqrt{q}$$
 (intradiction!

The statement can fail if $8 \notin \operatorname{Hin}(OC)$ (see HWZ Paoblem 8)

Broof of Theorem 1: White
$$\mathcal{B}_{2} = \int \mathcal{A}_{2} \quad \forall l$$
.
Assume $\Pi in (\partial t) = \langle \mathcal{B}_{1}, ..., \mathcal{B}_{k} \}$ (if not, norder the \mathcal{A}'_{s})
Given $i = 1, ..., k$ we want to give a characterization of \mathcal{A}'_{1} in terms of $\partial t + \partial_{2}$.
We will need to do some localization away from \mathcal{B}'_{1} .

We simplify notation a write
$$f_{1:}=f_{1:} \in \mathcal{P}_{2:}$$
.
Since \mathcal{P} is prime, $S = \mathbb{R} \setminus \mathcal{P}$ is a multiplicatively closed set in \mathbb{R} $\begin{pmatrix} .1 \in S \\ .2 \in S \\$

• We have a ring homomorphism
$$j: \mathbb{R} \longrightarrow S^{-1}\mathbb{R}$$
 (the localization).
Lemma 2 below gives the desired characterisation for \mathfrak{P} as $j^{*}(S^{-1}\mathfrak{A})$. D
Lemma 2: For \mathfrak{B} ; \mathfrak{P} a \mathfrak{A} as above we have $\mathfrak{P} = j^{*}(S^{-1}\mathfrak{A})$
Savel By construction, $j^{*}(S^{-1}\mathfrak{A}) = i r \in \mathbb{R}$: $sr \in \mathfrak{A}$ for some $s \in S$?
We pass the statement by a double inclusion:
(2) Pick $a \in j^{*}(S^{-1}\mathfrak{A}) = j^{*}(S^{-1}\mathfrak{P}) \Longrightarrow \exists t \in S$ such that $at = ta \in \mathfrak{P}$.
But $t \in S$ means $t \notin \mathfrak{B}$, so this forces $a \in \mathfrak{P} \times$
But $t \in S$ means $t \notin \mathfrak{B}$, so this forces $a \in \mathfrak{P} \times$
(2) By Lemma 2 we know that for any $\mathfrak{P}_{t} \neq \mathfrak{P}$ we have $\mathfrak{P}_{t} \notin \mathfrak{B}$. In
particular : $S^{-1}\mathfrak{P}_{t} = S^{-1}\mathfrak{R}$
As a consequence : $S^{-1}\mathfrak{A} = S^{-1}(\mathfrak{P}_{1} \cap \cdots \cap \mathfrak{P}_{T}) \stackrel{!}{=} S^{-1}\mathfrak{P}_{1} \cap \cdots \cap S^{-1}\mathfrak{P}_{T}$
 $= (S^{-1}\mathfrak{R}) \cap \cdots \cap S^{-1}\mathfrak{P}_{1} \cdots \cap S^{-1}\mathfrak{P}_{T}$
 $\Rightarrow j^{*}(S^{-1}\mathfrak{A}) = j^{*}(S^{-1}\mathfrak{P}_{T}) \cong \mathfrak{P}_{T}$.

A The proof of Lemma 2 tails if B∉ Min(OC) because Lemma (can tail.

\$3. Associated Paimes :

Theorem Z: Assoc (O() is independent of any choice of minimal primary decomposition of the ideal OL.

To prove the statement we need the following auxiliary result:

Lemma 3: Fix a commutative ring R & a primary cleak of in R. While B= II.
For
$$x \in \mathbb{R}$$
 we have:
(1) $x \in \mathfrak{A}$ (2) (2) (2) $= \mathbb{R}$
(2) $x \notin \mathfrak{A} \Rightarrow (\mathfrak{A}; x) = \mathbb{R}$
(3) $x \notin \mathfrak{A} \Rightarrow (\mathfrak{A}; x) = \mathfrak{A}$.
Hue $(\mathfrak{A}; x) = 3 a \in \mathbb{R}$: $a \propto \mathfrak{C} \notin \mathfrak{A}$
(4) $x \approx \mathfrak{A} = \mathfrak{A}$.
(5) $x \notin \mathfrak{A} \Rightarrow (\mathfrak{A}; x) = \mathfrak{A}$.
Hue $(\mathfrak{A}; x) = 3 a \in \mathbb{R}$: $a \propto \mathfrak{C} \notin \mathfrak{A}$
(6) $x \notin \mathfrak{A} \Rightarrow (\mathfrak{A}; x) = \mathfrak{A}$.
(7) We park (5) since $\mathfrak{A} \subseteq (\mathfrak{A}; x)$ is during valid.
Pick $a \in (\mathfrak{A}; x)$ is $a \propto \mathfrak{C} \notin \mathfrak{A}$. Since \mathfrak{A} is primary $a \propto \mathfrak{A}$ iff in these $a \in \mathfrak{A}$.
(2) We park (5) since $\mathfrak{A} \subseteq (\mathfrak{A}; x)$ is during valid.
Pick $a \in (\mathfrak{A}; x)$ is $a \propto \mathfrak{C} \notin \mathfrak{A}$. Since \mathfrak{A} is primary $a \propto \mathfrak{A}$ iff in these $a \in \mathfrak{A}$.
(2) We have that $\mathfrak{A} = \mathfrak{A} \subseteq \mathfrak{A}$. Since \mathfrak{A} is primary $a \propto \mathfrak{A} = \mathfrak{A}$ is the stare that $\mathfrak{A} = \mathfrak{A} = \mathfrak{A} = \mathfrak{A}$.
(2) We for $\mathfrak{A} \subseteq (\mathfrak{A}; x)$ is $\mathfrak{A} = \mathfrak{A} \subseteq \mathfrak{A}$.
(3) $\mathfrak{A} \subseteq (\mathfrak{A}; x)$ is $\mathfrak{A} = \mathfrak{A} \subseteq \mathfrak{A}$.
(4) $\mathfrak{A} = \mathfrak{A} \subseteq \mathfrak{A}$.
(5) Fick $\mathfrak{A} \in (\mathfrak{A}; x)$ is primary. By (3) we have it is a properided of \mathbb{R} .
Pick $a, b \in \mathbb{R}$ with $a \neq (\mathfrak{A}; \mathfrak{A}) = \mathfrak{A} \in (\mathfrak{A}; \mathfrak{A})$. Thue, $a \propto \notin \mathfrak{A}$ but exbed
Since \mathfrak{A} is primary , we get $b \in \sqrt{\mathfrak{A}} = \mathfrak{A} =$

Note that
$$\sqrt{(R_{1}:x)} = \sqrt{(\frac{R}{4}, \dots, \frac{R}{4}, \cdots, \frac{R}{4}, \cdots, \frac{R}{4}, \cdots, \frac{R}{4}, \cdots, \frac{R}{4}} = \int_{0}^{1} \sqrt{(\frac{R}{4}, \cdots, \frac{R}{4}, \cdots, \frac{R}{4})}$$

By Lemma 3 we have 2 oftims for each $\sqrt{(\frac{R}{4}, \cdots, \frac{R}{4})} = \begin{cases} 1 & \text{if } x \in q_{1} \\ R_{1} & \text{ise} \end{cases}$
Waiting the non-trivial terms in (RHS) of (*) we get $\sqrt{(R_{1}:x)} = \int_{0}^{\infty} R_{12}^{1}$
Note, we show the double inclusion of the sets in the statement:
(2) If $R=\sqrt{(R_{1}:x)}$ is prime a $R_{1}^{2} = \int_{1}^{\infty} R_{12}^{1}$ or it lies in the (LHS) of (K)
(3) Since $\int_{1}^{\infty} R_{12}^{1} \in R_{12}^{1}$ we get $R = R_{12}^{1}$ so it lies in the (LHS) of (K)
(4)
(5) Field $R = R_{2}^{1}$ them an $q_{1}^{1} \neq \bigcap_{i \neq j} q_{i}^{1}$ (by the minimality of the decomption
we can pick $x \in \bigcap_{i \neq j} q_{i}^{1} \setminus q_{j}^{1}$ Then:
 $\sqrt{(q_{1}:x)} = \sqrt{(q_{1}:x)} = \sqrt{(q_{1}:x)} = \sqrt{(q_{1}:x)} = R_{2}^{1}$
 $\lim_{i \neq j} \lim_{i \neq j} \lim_{$