Lecture VII: Hilbert Nullstellensatz
Recall: Basic duality for affine subvaricties of \mathbb{A}^{n} :

$$
\left\{\begin{array}{c}
\text { GEOMETRY } \\
\left.\begin{array}{c}
\text { Subvaricties } \\
\text { of } A^{n}
\end{array}\right\} \underset{V}{\rightleftarrows}
\end{array} \begin{array}{c}
\text { ALGEBRA } \\
\text { radical ideals } \alpha \\
\text { o } K\left[x_{1}, \ldots, x_{n}\right]
\end{array}\right\}
$$

Papprition: (1) If $W \subseteq A^{n}$ is a subvariety, then $V(I(W))=W$
(2) For any ideal $x \in \mathbb{K}\left[x_{1}, \ldots x_{n}\right] \quad I(V(\alpha)) \geq \sqrt{\alpha}$

- Natural questions for $\overline{\mathbb{K}}=\mathbb{K}$:
(1) [Consistency] Can we determine if a solution set is empty or not?
A.: Yes (Hilbert's Nullstellensatz)
(2) [Finiteness] Can we determine number of soletims? If finite, can we compute them?
\rightarrow (3) [Dimension] Can we determine the "dimension" of a solution st? (HARS!)
(4) [Local Parameterizatim] Can we parameterize a subvariety of A^{n} by a $\operatorname{map} \mathbb{K}^{m}, \underline{\varphi} \rightarrow \mathbb{K}^{n}$ with ratimal functimes?
A: NoT always!
(5) [Implicitigatin] Can we ditumine rquatives cutting out the image of a rat' $\ell \operatorname{map} \varphi: \mathbb{K}^{m} \ldots \mathbb{K}^{n}$? A : YES, using germination!
- Geiobren bases will help answer some of these questions.
s 1. Hilbert Nullstellensat3:
Hilbut's Nullstellesats (Null = Zeroes, Stellen $=$ Location, Salts $=$ Therm $/$ Statemat) well ensure the basic duality is a $1-\bar{\sigma}-1$ conespandence when $\mathbb{K}=\overline{\mathbb{K}}$.
The statement has 2 resins: a stans me \& a weak one (special case $V=\phi$)
Hilbert's Nullstellensatz: If $\mathbb{K}=\overline{\mathbb{K}} \Delta \alpha \subseteq \mathbb{K}_{\left[x_{1}, \ldots, x_{n}\right]}$ is an ideal, then (Stangrertion) $\quad I(V(\pi))=\sqrt{\infty}$.

Remarte: We know $I(X)$ is radical fo any variety \& $I(V(x)) \geq r$, so the indusia $(\geq$) is always twee (we don't need $\bar{K}=\mathbb{K}$ os this part)

The next statement characterizes empty varieties (and justifies the Terminology)
Weave Hill. Nullstellensaty : If $\mathbb{K}=\overline{\mathbb{K}}$ \& r is an ideal of $\mathbb{N}\left[x_{1} \cdots x_{n}\right]$ we have

$$
V(r)=\phi \quad \Longleftrightarrow \quad r=(1)=\mathbb{K}\left[x_{1}, \ldots x_{n}\right]
$$

Remark: Can think of this as a Fundamental Thurun of Algebra for multivariable prynmials ster \mathbb{C}.
Proof : \Leftarrow is direct
\Leftrightarrow Follows fum the Stang Nullstcllensatz. Indeed, if $V(\alpha)=\phi$, then $\sqrt{a}=I(V(\alpha))=I(\phi)=R$. This says that $1 \in \sqrt{a}$ ie $\exists N \geqslant 1$ with $1=1^{N} \in x$, so $r=(1)$ as we wanted.

- Interestingly enough, we can show that both statements are equivalent: Lemma 1: Weal Nullstellensatz \Rightarrow Strong Nullstellensate
Proof Since $\mathbb{K}\left[x_{1}, \ldots, x_{N}\right]$ is Noethernan, we will write $\pi=\left(f_{1} \ldots, f_{s}\right)$ for some choice of prlynumals $h_{1} \ldots, f_{s}$
Fix $f \in I(V(x))$. We want T_{0} find $m \geqslant 1$ with $f^{m} \in x$, ie $\exists g_{1} \ldots \rho_{s}$ with $f^{m}=\sum_{j=1}^{s} g_{j} F_{j}$
We prose this with an imperious trick ($\frac{R_{a b i n o w i t c h ' s ~ T r i c l e ~}}{[1929]}$) inturdecing an extra dummy variable:
Considu the ideal $\tilde{\tilde{r}}=\left(f_{(\underline{x})}, \ldots, f_{\underline{(\underline{E}})}, \underline{f_{(\underline{x})}}\right) \subseteq \mathbb{K}_{\left[x_{1}, \ldots, x_{n}, y\right]}$

$$
a \mathbb{K}\left[x_{1}, \ldots, x_{n}, y\right]
$$

Claim: $V(\tilde{x})=\varnothing$
If/ We argue by contradiction \& pick $c=\left(a_{1}, \ldots, a_{n}, b\right)=(\underline{a}, b) \in V(\tilde{a})$

Thus, a satisfies 2 conditions from the generation of $\tilde{\sim}$:
(1) $f_{1}(\underline{a})=\cdots=f_{s}(\underline{q})=0 \quad$, so $\underline{a} \in V\left(f_{1} \ldots f_{s}\right)=V\left(\left(f_{1} \ldots f_{s}\right)\right)=V(\alpha)$
(2) $1-b f(\underline{a})=0$. so $f(\underline{a}) \neq 0$ ie $f \notin I(\langle\underline{a}\})$

Thus: $\left.\quad f \notin I(\langle a\}) \underset{l_{\rightarrow b}(1)}{\longrightarrow} \mid V(x)\right)$ \& $f \in I(V(x))$ by hypothesis Cont!
By the Weak Nullstellensatz applied To or we get $\tilde{x}=(1) \in \mathbb{K}\left[x_{1} \ldots x_{n}, y\right]$ That mans $\exists h_{1} \ldots h_{n}, h \in \mathbb{K}[\underline{x}, y]$ with
(*) $1=\sum_{i=1}^{s} h_{i(\underline{x}, y)} f_{i(\underline{x})}+h_{(x, y)}\left(1-y f_{(\underline{x})}\right)$
Set $m=\max \left\{\log _{y}\left(h_{1}\right), \ldots, \operatorname{dog}_{y}\left(h_{s}\right), \operatorname{dg}_{y} h\right\} \geqslant 0 \quad$ \& multiply both sides of (x) by $f^{m}(x)$:

$$
f_{(\underline{x})}^{m}=\sum_{i=1}^{s}\left(f_{(x)}^{m} h_{i(\underline{x}, y)}\right) f_{i}(\underline{x})+f_{(\underline{x})}^{m} h_{(\underline{x}, y)}\left(1-y f_{(x)}\right) .
$$

Then setting $y=\frac{1}{f(x)}$ gives:

Hence, $f^{m} \in\left(f_{1}, \ldots, f_{S}\right) \mathbb{K}_{[x]}=\mathscr{D}$, as we wanted.
§2 Proofs of the Weak Nullstellensatz:
There are several proofs of this statement:
(1) Elementary prot using gröbner basis (will do this in a future lecture) [$\left.{ }_{(2012)}^{(20 b s k y]}\right]$
(2) Special case: chanacteriratim of maximal ideals of $\mathbb{K}\left[x_{1} \ldots x_{n}\right]$ for $K=\mathbb{K}$.
(Commutative Algebra heavy proof using Going-up Thu oren + Nether Nrualigation)
Next, we out line proof (1) For the nun-trinial implication of the WN statement. Proof (2) will be discussed next time.

Proof 1: We will show the contrapositive, ie $x \nsubseteq(1) \Rightarrow V(\alpha) \neq \varnothing$.
The argument will iurolse intersecting or with hyperplanes $x_{n}=a_{n}, x_{n-1}=a_{n-1}$
$\ldots, x_{1}=a_{1}$ fr suitable $a_{n}, a_{n-1} \ldots, a_{1} \in \mathbb{K}$ so that each ideal

$$
\alpha_{j}=\left(r+\left\langle x_{n}-a_{n}, \ldots, x_{j}-a_{j}\right\rangle\right) \cap \mathbb{K}\left[x_{1}, \ldots, x_{j-1}\right]
$$

mains proper.
By induction; it suffices to show this for one step. Fix $a_{n}=a \in \mathbb{K}$
Claim 1: $\quad a_{n}=\{\bar{f} \mid f \in x\}$ where $\bar{f}\left(x_{1} \ldots x_{n-1}\right)=f\left(x_{1} \ldots x_{n}, a\right)$
PF/ We show the double inclusion:
(c) If $g \in\left(\pi+\left(x_{n}-a\right)\right) \cap \mathbb{K}\left[x_{1} \ldots x_{n-1}\right]$, then
$\delta\left(x_{1} \ldots x_{n-1}\right)=f_{\epsilon \in c}^{f\left(x_{1}, \cdots x_{n}\right)+h\left(x_{1} \ldots x_{n-1}\right)\left(x_{n}-a\right) \text { is indep of } x_{n} . ~ . ~ . ~}$
Evaluating both sides at $x_{n}=a_{m}$ gives $f\left(x_{1} \cdots x_{n-1}\right)=\bar{f}+h\left(x_{1} \cdots x_{n-1}\right) \cdot 0=\bar{f}$
(ㄹ) Writing $f\left(x, \ldots x_{n}\right)=\sum_{j=0}^{m} f_{j\left(\underline{x}_{1}\right)} \in \mathbb{x _ { j } ^ { j }} \in \mathbb{f} \quad x^{\prime}=\left(x_{1}, \ldots x_{n-1}\right)$
$\begin{array}{ll}\text { gives } f\left(x_{1}^{\prime}, x_{n}\right) \\ \left.\text { (wite } x_{n}=\left(x_{n}-a\right)+a\right)\end{array}=\sum_{j=0}^{m} f(x) \sum_{k=0}^{j}\binom{j}{k} a^{j-k}\left(x_{n}-a\right)^{k}$

$$
\begin{aligned}
& =\sum_{j=0}^{m} f_{j}(x) a^{j=0}+\sum_{j=1}^{m} f_{j}\left(x^{\prime}\right) \sum_{k=1}^{j}\left(j_{k}\right) a^{j-k}\left(x_{n}-a\right)^{k} \\
& \text { (} k=0 \text { foal } j) \quad(k>0 \text { terms fo all } j>1) \\
& =\bar{f}\left(x^{\prime}\right)+\left(x_{n}-a\right)\left(\sum_{j=1}^{m}\left(\sum_{k=1}^{j}\binom{j}{k} a^{j-k}\left(x_{n}-a\right)^{k-1}\right) f_{j}\left(x^{\prime}\right)\right. \\
& =: g(x)
\end{aligned}
$$

Collude : $\begin{array}{cc}\bar{f}\left(x^{\prime}\right)= & f(x)-g(x)\left(x_{n}-a\right), \text { so } \bar{f} \in a_{n} \\ \pi & \pi \\ \mathbb{N}\left[x^{\prime}\right] \quad & a+\left(x_{n}-a\right)\end{array}$
Claim 2: If $\overline{\mathbb{K}}=\mathbb{K}$ and $\dot{x} \subset \mathbb{K}\left[x_{1} \ldots x_{n}\right]$, then there is $a \in \mathbb{K}$ such that

$$
a_{n} \subsetneq \mathbb{K}\left[x_{1} \cdots x_{n-1}\right]
$$

Remark: Proof of Claim 2 uguines us to pick a suitable set of generators to or (a gröbnen basis will ussect to the lexicographic order). We will prove this claim in a future homework, after we've seen G röbner bases.

- Induction m n combined with Claim 2 allow us to pick values a_{n}, \ldots, a_{1} so that $\pi_{1}\left(=\left\{f_{(}, \ldots, a_{n}\right) f \in \alpha\right\}$ by Claim 1) is a proper ideal of \mathbb{K}. Since \mathbb{K} is a field, we get $r_{1}=(0)$ ie $f(\underline{a})=0 \quad \forall f \in \mathbb{Q}$. This shows $\exists a \in V(a)$, is $V(a) \neq \phi$.

