Lecture VIII: Hilbert Nullstellersatz IT

Last time we discussed the following 2 theorems.

$$\frac{\text{Hilbert's Nullstellen satz:}}{\text{IF } \mathbb{K} = \mathbb{K} \text{ a } \mathcal{A} \subseteq \mathbb{K}[x_1, ..., x_n] \text{ is an ideal., then}}{\mathbb{I}(\mathbb{V}(\mathcal{H})) = \mathcal{I}\mathcal{A}}.$$

Weak Hilb. Nullstellinsatz: If
$$K = \overline{K} \otimes \partial t$$
 is an ideal of $K[x_1, ..., x_n]$ we have
 $V(\partial t) = \phi \implies \partial t = (1) = K[x_1, ..., x_n]$
Remark a last the total the second structure of Alexano by multiposed

Kenark: Can think of this as a Fundamental Theorem of Algebra for multivariable polynomials over C.

Lemma: Strong & Weak versions are equivalent
We discussed a proof of the Weak Nullstellensatz via selicing with hyperflames
$$x_i = q_i$$
.
TODAY: we'll discuss a different proof using Noether Normalization + Going-Up.
51. Marximal ideals of IK(x,...,xn] when $K = IK$;

Our first result characterizes maximal ideals of $K[x_1, \dots, x_n]$ when $\overline{IK} = IK$ Theorem 1: Fix $IK = \overline{IK}$ a field. Then, all maximal ideals of $IK[x_1, \dots, x_n]$ are of the form $M_a = (x_1 - a_1, \dots, x_n - a_n)$ for some $\underline{a} = (a_1; \dots; a_n) \in A_{IK}^n$

The rest of today will be devoted to proving this statement. But first, we discuss 2 key consequences of this statement.

Corollary Z: Fix an affine subveniety $W \subseteq A_{1K}^{n}$. If $\overline{IK} = IK$, there is a 1-to-1 wrespindence between:

<u>Kemark</u>: We emphasize closed points because in scheme theory there are other points on an attime scheme = Spec(A) for A a ring.

So if A is not Antinian, we have prime ideals that are not praximal. In particular we will have generic points_ le those where $\overline{2pt} = \operatorname{Spec}(A)$ (eg (0) $\subseteq A$ if A is an integral bomain)

Sz Proof of Theorem 1:

• It is char that all M_{n} 's are maximal because $\frac{[K_{(X_1, ..., X_n)}] \sim [K_{..., X_n}]}{M_{n}} \sim [K_{..., X_n}] \xrightarrow{M_{n}} K$ $[K \sim K_{[X_1, ..., X_n]} \xrightarrow{M_{n}} K$ $[K \sim 1 \qquad X_{i} \sim A_{i}]$ $k \sim k$

To finish, pick $M \subseteq [K(x_1,...,x_n]]$ a maximual ideal. We want to find $\underline{a} \in [M_{11K}^n]$ with $M = M_{\underline{a}}$. Since M is nowineal, we get that (1) $M \cap [K = 30]$ (2) the quotient ring $L := [K(x_1,...,x_n)] = [K[\overline{x}_1,...,\overline{x}_n]$ is a field Combining (1) & (2) we see that $[K \longrightarrow [K[x_1,...,x_n]] \longrightarrow L$ $1 \longmapsto 3 \overline{x}_c$ induces $[K \subseteq \Psi = L]$, ie L[[K is a field extensin. Claim: LIK is an algebraic extension

· Assuming the claim, we can prove the theorem. Indeed, rince LIK is algebraic end TK=1K, we get L=1K, ie Pis surjecture. Choosing $a_{1,-}$; $q_n \in \mathbb{K}$ with $P(a_j) = \overline{X_j}$ for all j = 1, ..., n we get $x_j - \alpha_j \in \mathcal{M}$ $\forall j = 1, ..., n_j$ ie Ma = M. Since Ma is mad & M is a proper ideal, we conclude that $M_a = M$, as we wanted to show. D "Broof of the Claim: We do this in 3 steps. SIEP1: Find an intermediate field KCSCL where 1) himite extension (30, algebraic!) S) punly transcendental and S= IK (y, yk) for some y1, ... yk EL algebraically independent over IK STEP 2 : Show 5 is a finitely generated K-algebra. STEP 3: Conclude that k=0. when Kis infinite (OK if K=1K) . STEP I will be addressed by Noether Normalization an auxiliary lemma. (Use that LIS finite) . STEP Z -. Next, we discuss STEP 3 : Pick Z1, ..., Ze E SEL be a collection of generators of S as a IK-algebra, ie S = [K[21..., 22] modulo relations. $z_j = \frac{P_j(y_1, \dots, y_K)}{2}$ fr j=1,...,l. The definition of S gives us $\mathcal{R}_{j}(y_{1}, \cdots, y_{k})$ where $P_j, Q_j \in [K[y_1, \dots, y_k]$. Claim: The polynomial ring IK (y1, ..., yk] forkal has finitely many ineducibles

Sty Pid any inclucible phynomial
$$f \neq 0$$
 in $|K[y_1, \dots, y_k] \subseteq S$ field, so $\frac{1}{k} \in S$
where can find a polynomial $A_{(\underline{k})} \in |K[\underline{k}_1, \dots, y_k]|$ so that $\frac{1}{k} = A(\underline{s}_1, \dots, \overline{s}_k)$
· By definition of $\underline{s}_1, \dots, \underline{s}_n$ we get $\underline{f} = \frac{P(\underline{s}_1, \dots, y_k)}{Q(\underline{s}_1, \dots, y_k)}$ where
 $Q = |Q_1^{d_1}, \dots, Q_k^{d_k}|$ ($d_i = d_{\underline{Q}_{(\underline{s}_i)}}(A)$ for $i=1, \dots, k$)
In particular $F(|Q_j|)$ for some $\underline{j}=1, \dots, k$
(inclusion: $F \in \bigcup_{j=1}^{k}$ for some $\underline{j}=1, \dots, k$
(inclusion: $F \in \bigcup_{j=1}^{k}$ for some $\underline{j}=1, \dots, k$
(inclusion: $F \in \bigcup_{j=1}^{k}$ for some $\underline{j}=1, \dots, k$
Dubit K is incluste as $3y \rightarrow 1_{X \in K}$ are all inclusibles over $|K[y_1, \dots, y_k]$.
This instructes the claim which is which for $N \in N = K$.
Next, we state the auxiliary lemma needed for $STEP 2$.
For the application, we take $R = |K|$, $S = |K(y_1, \dots, y_k)| \in A = L = |K[\overline{k}_1, \dots, \overline{k}_k]$.
Lemma 1: Let R be a Northerian commutative using $\underline{a} S > R$ any subsiding
of a Fig. R -algebra A . If A is finitely generated as one S module then
 S is a finitely provated R -algebra.
(Recall: $B = A Fig R$ -algebra $T \in H = R[\overline{k}_1, \dots, \overline{k}_n] / I$ for some ideal T .
(A the matter x_1, \dots, x_n have an election T theore in the proof of Theorem 1)
Fix $y_1, \dots, y_m \in R[\overline{x}_1, \dots, \overline{x}_n]$ generators of this S -module (maxime $\overline{x}_i \in S$.
In addition to those in $STEP(1)$. In particular, we can write
 $\overline{x}_i = \sum_{j=1}^{m} 4_j(y_j)$ for $a_{i,j} \in S$.
In addition: $y_i, y_j = \sum_{k=1}^{m} b_{i,j}K Y_k$ for $b_{i,j}K \in S$

Consider the subaing RCSOCS generated over R by Sairj, birj, kij, k

(1) Since So is a f.g. R-algebra (quotient of a polynomial wing over R), no know So is also a Northerian ring. (2) By definition of So, y,... ym E R(x,...xn) converse this wing as an So-module. Emsequence: S is an So- submodule of the Neetherian So-module P(X, --- Xn], so Sis Fig as an So-submodule. <u>Claim</u>: So is a fig R-algebra => S is also a fig. R-algebra. BE/ White generatives of Som So . 3 s1, ..., sr & a use the fact that S is a ing to conclude: $\mathbb{R}_{[\alpha_{ij},b_{ij},k][s_{1},\ldots,s_{r}]} \longrightarrow \mathbb{S}_{o}[s_{1},\ldots,s_{r}] \longrightarrow \mathbb{S}_{ning}$ frond polynomial ring & map restricted to R is inc: R -> S. D . For STEP 1, we need the following statement, whose proof will be given next time. Theorem 2 (Norther Normalization): Let 1K be a field and A a Finitely generated $[K-algebra . Say A = K[x_1...x_m]/I = K[x_1...,x_n] . Assume A is a domain.$ Then I k=0,..., n & y1,..., yk EA algebraically independent over K

such that A is integral over $K[y_1, \dots, y_{k}]$. (Recall: reA is integral over S if $\exists F \in S[z]$ music with F(r) = 0.)

For the application we observe :

