Lecture IX: Norther Normalization

§ 1. Norther Normalization:

The statement has many incarnations. We choose the mes that are more interesting for currete computations (ie, me where we know how to build \$1...., yn). The Theorem is valid for general fields 1K.

Theorem 1 (Norther Normalization): Let IK be a field and A a Finitely generated K-algebra. Say A = K[x1,...xm]/I = K[x,...,xm]. Assume A is a domain. Then I r=0,..., n & n,..., n, EA algebraically independent over K such that A is integral over K[n,...,n,]. Moreover, r = Tedeg_K(Quot(A)) (Recall: ref is integral over S if I fee S[2] music with f(r) = 0.)

4 every element of Quot (A) is algebraic over K, hence integral over [K[y1,...,yn]. . Utherwise, we proved by induction mn.

• Inductive Step: Pick
$$n > 0$$
 & an algebraic dependency relation among x_1, \dots, x_n .
(*) $g_{(\underline{x})} = \sum_{\underline{\alpha}} a_{\underline{\alpha}} x_1^{\underline{\alpha}_1} \dots x_n^{\underline{\alpha}_n} = 0$ with $q_{\underline{\alpha}} \in [K \setminus 30\}$

IDEA: If $\exists i=1,...,n$ such that $LT_{\chi_{i}}(g) \in K$ (ie the largest maximal in χ_{i} -variable in g is a pure power of χ_{i}), then $\underline{l}_{X_{i}}(g) \in K[\chi_{i},...,\chi_{n}]$ is unit in $\chi_{i} \in So$ χ_{i} is integral over $K[\chi_{i},...,\chi_{i},...,\chi_{n}]$

The inductive step on
$$\tilde{A}$$
 will produce $\{u_1, \dots, u_r\} \in \tilde{A}$ algebraically independent
with A ... So $A | [K_{[u_1, \dots, u_r]}]$ becomes integral by the
 \tilde{A}] integral transitivity of integral extensions.
 $[K_{[u_1, \dots, u_r]}]$
 $[K$

. If no such X; exists, we'll need to do a change of coordinates to achieve this. (not necessarily lines!)

Consider
$$\underline{m} = (1, \underline{m}_{2}, ..., \underline{m}_{n}) + set \quad \Im_{j} = x_{j} - x_{n}^{m} i \quad fr \quad j > 1$$

Substitute $x_{j} = \Im_{j} + \chi_{n}^{m} i \quad (*) \quad By \quad construction \quad \underline{\chi}_{i}^{\underline{\alpha}} = \chi_{i}^{\alpha_{1}} - \dots - \chi_{n}^{\alpha_{n}} \quad becomes$
 $\chi_{i}^{\underline{\alpha} - \underline{m}} + pslynnical with no pure prover in χ_{i} .
 $\varepsilon \quad with all mnomials \quad sling_{x_{i}} < \underline{\varepsilon} \cdot \underline{m}$.$

Expanding the relation in
$$\mathbb{K}[y_{2}, y_{n}](x_{1}]$$
 we get:
 $g(x_{1}) := \sum_{\underline{x}} a_{\underline{x}} \times x_{1}^{\underline{x} \cdot \underline{m}} + f(x_{1}, y_{2}, \dots, y_{n}) = 0 \in \mathbb{K}[y_{2}, \dots, y_{n}](x_{1}]$

where no nonumial in F is a pure power of x_1 . Fundermore, by construction, we have $d_{1}g_{x_1}(F) < d_{1}g_{x_1}(g)$ if the expected degree of g-F is attained. We will achieve this if no Terms in g-F cancel out. We need to pick suitable <u>m</u> for this to happen.

• Next, we pick $d \gg 1$ (for example, $d > \|x_1\|_{\infty}$ with $a_{\underline{x}} \neq 0$) a set $m_{j=} d^{d^{-1}}$ for j>1 If $e_{\underline{x}}: \underline{x} \cdot \underline{m} \in \frac{1.5-1}{2} \xrightarrow{\underline{x}}$ via writing $\underline{x} \cdot \underline{m}$ in base d. This choice ensures that $\sum_{\underline{x}} a_{\underline{x}} \times \frac{x \cdot \underline{m}}{1} \neq 0$ in $\mathbb{K}[x_1]$ The deque constraints allow us to find $c \in \mathbb{K} \cdot 3$ or where $c \cdot g_{(\underline{x})} \in \mathbb{K}[y_1 \cdots y_r][x]$ is minic in $\underline{x} \in cg(\underline{x}_1) = 0$. Thus, \underline{x}_1 is integral on $\mathbb{K}[y_2, \cdots, y_n]$. • Since $A = \mathbb{K}[x_2, \cdots, x_n][x_1] = \mathbb{K}[x_1, y_2, \cdots, y_n]$ because $x_j - (y_j + x_1^{m_j}) = 0$ for j > 1

we conclude that
$$A = [K[x_1, \dots, x_n]$$
 is integral see $K[y_2, \dots, y_n]$.
 $A = [K[y_2, \dots, y_n][x_i]$ integral
 $[K[y_2, \dots, y_n]$ domain
 $F_g[K-algebra]$
 K

By inductive hypothesis, we can find
$$3u_1, \dots, u_r$$
 is alg indep over IK with

$$\begin{bmatrix} K [y_2, \dots, y_n] \\ I \\ K [u_1, \dots, u_r] \end{bmatrix}$$
integral

$$\begin{bmatrix} K \\ K \end{bmatrix}$$

By transitivity of integral extensions, we enclude A is integral over $[K[u_1, ..., u_r]$. From Quot(A) $\begin{bmatrix} 1 \\ K(u_1, ..., u_r) \end{bmatrix}$ algebraic , we enclude that $r = t_1 \log Quot(A)$ $\begin{bmatrix} K \\ U \end{bmatrix}$ $\begin{bmatrix} K \\ U \end{bmatrix}$

Remark ! The proof gives us an algorithm for computing 3 u, ... 4, 5 in "Norther pritin" . If 3x, ..., xn & are algebraically independent on IK, we take u; = x; for all i.

- Otherwise, up to nordning of the variables x_1, \ldots, x_n we can write $y_1 = x_1$ $x_1 = x_1 - x_n^{d^2}$ for $i = 2, \ldots, r$ for suitable $d \gg 0$ The d will be determines from the algebraic relation among x_1, \ldots, x_n .

The following limma is due to Noether a simplifies the constantion of fu, ..., u, } in "Noether position" when K is infinite.

Lemma 1.: If K is infinite, we can take u_1, \dots, u_p to be K-linear combinations of x_1, \dots, x_n . (a generic me will bo)

<u>Snoof:</u> It's enough to discuss the case where $\{x_1, \ldots, x_n\}$ are algebraically dep. We proceed by induction on n 21, starting from the non-trivial relation: (*) $\sum_{\underline{\alpha}} a_{\underline{\alpha}} x_1^{\alpha_1} \cdots x_n^{\alpha_n} = 0$ with $a_{\underline{\alpha}} \in \mathbb{K} \setminus \{0\}$ · Base case: n=1 A= IK [x] is integral on IK 3u,...ur 4 = \$ • Inductive Step: Pick n > 1 as set $y_i = x_i - b_i x_i$, for $i = z_1 \dots n$ Substituting $x_i = y_i + b_i x_1$ on (*) we get $\delta(x_1) = c_1(b_2, ..., b_n) x_1^d + \sum_{j=0}^{n} c_j(b_2, ..., b_n, y_{21}, ..., y_n) x_1^j \in \mathbb{K}[y_1, ..., y_n][x_1]$ where 2 = max loc 11 By constantion $c_{d}(b_{2},..,b_{n}) = \sum_{\substack{\|x\|_{j=d}}}^{j} a_{\underline{x}} b_{\underline{z}}^{d_{1}}...b_{n} \neq 0$ in $\|K[b_{2},...,b_{n}]$ Since IK is infinite, we can find $b_2, ..., b_n \in [A_{1K}^{n-1}]$ with $C=C_d(L_2, ..., b_n) \neq 0$ in [K] If follows that $C^{-1}g \in [K[y_2, ..., y_n][X]$ is monic in X & mishes $m \times I$. A (X) A jintegral IK[y2,..., yn] integral Then By inductive hypothesis] u, ..., ur K-linner combinations of yz, ..., yn with IK[122.-->3n] integral IK[11,...,12] & 3mi,..., ur & alg. indep over IK => jui,..., ur { an K-limar continations of x1,..., xn & A is integral over [K[u,...,ur] as we wanted. Remark: A generic IK-linear combination will suffice since the coefficients must lie outside a finite set of hypersurfaces (eg bz..., bn must lie outside V(c2)).

Example: $A = [K[x,y]/(y^2-x^3-ax-b)]$ for a, b $\in [K^302]$ We assume that $[K \neq 2, 3]$. Then, A is an integral domain & Quot (A) is the hunction hield of the elliptic curre $V(y^2-x^3-ax-b) \leq |A_{1K}^2$. $T_1 dug_{1K} Quot(A) = 1$. For the Norther position, we can take () ? x & or 3yt, (23 y+xd] for d>) (3) 3 y + Cx Y for C generic Note: y is integral on IK[x] & [Quot(A), IK(x)]=2 x _____ [K[y] & [Quot(A), [K(y)]=3 · For (2) 3x, y = y+x 2 so (y-x2) - x3 - ax - b = y2 + x22 - 2xy - x3 - ax - b says $x^2 - x^3 - ax - b + (\tilde{y}^2 - 2x\tilde{y}) = 0$ so x is integral one $K[\tilde{y}]$. \Rightarrow $u_1 = y = y + x^d$ work for any d > 3. • For (3) 3x, y = y + cx so $(y - cx)^2 - x^3 - ax - b = c^2 x^2 - x^3 - ax - b + (y^2 - 2cx)$ says $-x^3 + c^2x^2 - ax - b + (\tilde{y}^2 - 2cx) = 0$ so x is integral ner $[K[\tilde{y}]]$ Here, LT = - 1 is never 0. so any CEIK works. => u,= y= y+cx works for any celk.