Letrere X: Cordinate Rings & Mrphisms

So far we have described the objects of interest (altrine subvarieties of
$$|A_{IK}^{n}\rangle$$

Next, we unstruct functions between these objects to obtain a category.
St. Coordinate Rings:
Definition: Given $W \subseteq A_{IK}^{n}$ we define its coordinate eing or the aring of polynomial functions
m W as $|K[W] := |K[x_1, \dots; x_n]_{I(W)}$
Note: We know from Lemma 9 \$3.2 that $I(W)$ is radical, so $|K[W]$ has no nilpotents

This lack of nilpotents will be dropped when dealing with Schemes. Q: Why is this called the ring of polynemial functions?

A: A phynomial
$$F \in K(x_1, \dots, x_n)$$
 defines a function $F: A_{K}^{n} \longrightarrow K = A_{K}^{n}$.
 $P \longmapsto F(P)$

However, 2 functions $F, g \in \mathcal{H}_{1K}^{n}$ restrict to the same function on $W \subseteq \mathcal{H}_{1K}^{n}$ subvariety if, and may if, $f(\underline{p}) - g(\underline{p}) = 0$ $\forall \underline{p} \in W$. Equivalently, if $f = -g \in I(w)$. Thus, $\overline{f} = \overline{g}$ in |K[V]The lock of vibratists $|\underline{p}||K[v]$ ensure that we don't have f with $f^{m}(\underline{p}) = p$ there

• The lack of nilpotents for IK[V] ensures that we don't have f with f^m(p)=0 <u>±</u>I∈V but f ≠0. on V.

The ring |K[w] admits many presentations, so I(w) cannot be recovered uniquely fam |K[w]. (Eg $|K[A'_{iK}] = |K[X] = |K[X,y]_{(y)}$) • For affine schemes, the space is determined by its ring of functions, so the presentation will be inderent

<u>Remark</u>: W is ineducible \iff [K.[W] is an integral domain. • This construction allows us to build relative versions of V(·) & I(·) to pre surselves from the ambient variety A_{ik}^{μ} .

32. Polynomial maps between affrine varieties:
Given V = 1Aⁿ_{ik} & W ∈ A^m_{ik} see used goal is to define maps 4: V → W compatible with the algebra of affrine nucleis. What conditions we want to impose on 4?
(1) Maps should be continuous with respect to the Zanishi topology a both V & W
(2) If W = A¹_{ik} we should recore IK[V] which we identified with polynomial maps V → Aⁿ_{ik}.
In general, maps V → A^m_{ik} built out of frontions m V (ie IK[V]), so we'll need m-tuples of elements on K[V] to define 4. In short: 4 ← K(V)^m.

(9) Niewing
$$K[w]$$
 as maps $W \longrightarrow H'_{iK}$ & $K[v]$ as maps $V \longrightarrow H'_{iK}$
We see that any $g \in K[w]$ should give us an element of $K[v]$ via
 $V \xrightarrow{\varphi} W \xrightarrow{g} A'_{iK}$
 g, φ

This will had to a map $Q^*: \mathbb{K}[W] \longrightarrow \mathbb{K}[V]$ called the pullback In general, newing $V \longrightarrow W \longrightarrow \mathbb{A}^n_{\mathbb{K}}$ we see that maps $Q_*V \longrightarrow \mathbb{W}$ come from polynomial maps whose image lies in \mathbb{W} .

Definition: A polynomial map or morphism from V To W is a map

$$\Psi: V \longrightarrow W$$
 such that there exists $F_{1,--}$, $F_{M} \in \mathbb{K}[V]$ with
 $\Psi(I_{-}) = (F_{1}(P_{1}), \cdots, F_{M}(P_{1}))$ $\forall P \in V$

The set of morphisms is denoted by Hom(V, W). <u>Examples:</u> (1) Hom $(A_{1K}^{n}, A_{1K}^{m}) = IK[x_{1,\cdots}-x_{n}]^{m}$ (2) Hom $(V, A_{1K}^{n}) = IK[V]$ (3) IF $V \subseteq W$ is subveriety, then $inc: V \subseteq W$ lies in Hom(V, W) $(W \subseteq A_{1K}^{m}) = (\overline{x}_{1}, \cdots, \overline{x}_{m})$ $\overline{x}_{i} \in IK[V] = \underline{C[x_{1}\cdots x_{m}]}$ In particular, $A_{V}: V \longrightarrow V \in Hom(V, V)$.

Next, we check our wishlist of projecties for Hm (V,W): <u>Proposition 2:</u> Any YEHm (V,W) is continuous when V&W are endowed with their respective Zarishi topologies.

Suph: IF ZEW is dived , then
$$P^{-}(Z) = 3 P EV : Fr(P), -F_{m}(P) EZ$$

Since W is clock M_{MK}^{m} , then Z is clock in M_{K}^{m} is $Z = U(S)$ for sine
 $S = {}^{3}S_{1}\cdots S_{F} E = [K(X_{1}, ..., X_{m}]]$. In particular,
 $P^{-1}(Z) = V(\Gamma V (\frac{S_{1}(F_{1}, ..., F_{m})}{E(K_{1}, ..., X_{m}]}) = E[K(X_{1}, ..., X_{m}]]$
So $P^{-1}(Z)$ is an efficie subscrift of M_{K}^{m} . $e P^{-1}(Z) \leq V$. Thus, it is clock
in the Zanishi Topology of V.
Conclusion: pairmage of clock all of W are cloud in V, so P is entimeters. D
Next, we deak enditions that maps in a collegous must satisfy:
Proportion 3: (1) IF PEHam(V,W) & VEHam(V,W)
Scool: (1) Composition of polynomial functions are polynomial functions.
IF $P = (F_{1}...,F_{m}) = V = (S_{1}...,S_{S}) = Q \in E[K_{1}W] = K_{1}(Y)$.
Then $g_{1}(F_{1},...,F_{m}) = (Y = (S_{1}...,S_{S})) = Q \in E[K_{1}W] = V = K_{1}(Y)$.
(2) $H = V \longrightarrow V = EHam(V,W)$
Subscheider is independent in the independent of $g_{1} \in K_{1}(W]$ is $F_{1} \in K_{1}(V)$.
Then $g_{1}(F_{1}...,F_{m}) = (Y = (S_{1}...,S_{S})) = Q \in E[K_{1}W] = V_{1}, F_{1}(Q) \in W$,
is the value is independent in the independent of $g_{1} \in K_{1}(W)$ is $f_{1} \in K_{1}(V)$.
(2) $H = (X_{1}...,X_{m}) = F = V = M_{K}^{m}$.
But nume theorem onlines that the data of a wortherm is puelly using therefore.
 $\frac{P^{+}S}{S} = g_{0}P \in K_{1}(V)$
Lemma $Z : P^{+} : K_{1}(W] \longrightarrow K_{1}(V) = G = K_{1} = A_{2} = A_{1} = A_{1$

$$\begin{aligned} &(ii) \varphi^{*}(1) = 1 \circ \varphi = 1 \\ &(iii) \varphi^{*}(\varsigma) = (\varsigma) \circ \varphi = (\varsigma \circ \varphi) \cdot (F \circ \varphi) = \varphi^{*}(\varsigma) \cdot \varphi^{*}(F) . \\ &\bullet \text{Next}, \text{ we chick that } \varphi^{*}_{|IK} = \text{MC}_{|K_{j}|K[V]} \\ &\varphi^{*}(\overline{k}) = \overline{k} \circ \varphi = \overline{k} = \text{inc}_{|K_{j}|K[V]}(k) . \end{aligned}$$

Theorem 2: If $V \leq A_{IK}^{n}$ a $W \leq A_{IK}^{m}$ an affiny subvarieties, then $\Psi \rightarrow \Psi^{*}$ defines a bijection: Hom $(V, W) = \frac{\Phi}{2} + \frac{3\Psi}{1K} |K_{IW}| \rightarrow |K_{IW}| |K - algebra homomorphisms F$

$$\frac{\sum_{u \ge 0} f}{\sum_{v \ge 1} (u + u)} = (v + u) = (v + u), \quad \forall = (v + u) \in W(u)$$

$$\frac{\varphi^{u} = \tilde{\varphi}^{u}}{\sum_{v \ge 1} (u + u)} = (v + u), \quad \forall = (v + u) \in W(u)$$

$$\frac{\varphi^{u} = \tilde{\varphi}^{u}}{\sum_{v \ge 1} (u + u)} = (v + u) \in W(v) \quad \forall g \in W(u)$$

$$\frac{\varphi^{u} = \tilde{\varphi}^{u}}{\sum_{v \ge 1} (u + u)} = (v + u) \quad \forall g \in W(u)$$

$$\frac{\varphi^{u} = \tilde{\varphi}^{u}}{\sum_{v \ge 1} (v + u)} = (v + u) \quad \forall g \in W(v) = v$$

$$\frac{\varphi^{u} = \tilde{\varphi}^{u}}{\sum_{v \ge 1} (v + u)} = (v + u) \quad \forall g \in W(v) = v$$

•
$$\oint is surgetive!$$
 Fix $\Psi: |K[w] \rightarrow |K[v] |K - algebra hummerphism & consider
 $f_j = \Psi(g_j) \in |K[v] |_{fr} all j = 1, ..., m$.
Set $\Psi = (f_1, ..., f_m): V \rightarrow A_{ik}^{in}$
(laim !: $\Psi(g) \in W = \Psi g \in V$, so $\Psi \in Him (V, W)$
 $\Im f/We need to show that $\forall g \in I(w): go \Psi(g) = 0 \quad \forall g \in V$
For any $g \in |K[w]$, we write $g = \sum_{n=1}^{\infty} a_n g^n + I(w)$. Then:
(M) $\Psi(g) = \Psi(\sum_{n=1}^{\infty} a_n g^n) = \sum_{n=1}^{\infty} a_n \Psi(g_n)^n = \sum_{n=1}^{\infty} a_n E^n = g(f_1, ..., f_m) \in |K[v]$
 $\Psi hummervelowers = \Psi(g_j) = f_j: = go \Psi$$$

By constantion,
$$\Psi(\overline{s}) = 0 \in K[V]$$
 whenever $g \in I(W)$ because $\Psi(o_1 = 0$.
There if $g \in V$: $\Psi(g)(g) = g(f_1(g), ..., f_m(g)) = 0$
We enclude that $(f_1(g_1, ..., f_m(g)) \in V(I(w)) = W$.
(laim 2: $\Psi^{K} = \Psi$ so $\overline{\Phi}(\Psi) = \Psi$.
 $\overline{g} f \xrightarrow{K} By (e)$ we get $\Psi(g) = g(f_1, ..., f_m) = g_0 \Psi = (\Psi^{K}(g)) \quad \forall g \in K[w] . \square$
Remark. Theorem 2 is what ditermines workhisms between affirm schemes. We define
schemes by identifying the space with its coordinate ring so $\overline{\Phi}$ will
be defined tautologically.
 M Une constantion is not well-adapted to lead behaviores (eg holomorphic
bunctions on connected of a subsets of C vs. there defined as all Ω). For this
reason, we will like to extend the work of a sequelar function to den selects of
 M_{M}^{*} (or subminities $W = (h_{M}^{*})$ with supert to the Zoniski Topology. In doing so,
we'll avice naturally to the work of shares.