$\frac{Recall}{R} \xrightarrow{A^{n}} \xrightarrow{V_{K}} \{a_{0}, \dots, a_{k+1}, \dots, a_{n}\} \xrightarrow{A^{n}} \{a_{0}, \dots, a_{n}\} \xrightarrow{A^{n}} \{a_{0}, \dots, a_{n}\}$

At the polynomial level:
$$K[\frac{x_0}{x_k}, ..., \hat{1}, ..., \frac{x_n}{x_k}]$$
 is the coordinate sing of $U_k \simeq A^h$
() Given $W = V_{\text{proj}}(F_1, ..., F_m)$ \longrightarrow $W \cap U_k = V(F_1^{(k)}, ..., F_m^{(k)})$
 $F_i \in [K[x_0, ..., x_n]$ homogeneous

Affinization:
$$F_i \longrightarrow F_i^{(k)} = \overline{F}_i \left(\frac{X_0}{X_k}, \dots, \frac{X_n}{X_k} \right)$$

(counterpart:

$$V = V(F_1, ..., F_s) \subseteq A^n \simeq U_{kk} \longrightarrow W = V_{proj}(F_1^h, ..., F_s^h) \subseteq \mathbb{P}^n$$
 is a projective
unity with $W \cap U_{kk} = V$.

Homogeneigation:
$$F \in K[y_1, \dots, y_n] \longrightarrow f^h(y_0, \dots, y_n) = y_0^{h_1} f(\frac{y_1}{y_0}, \dots, \frac{y_n}{y_n})$$

GI: Is W the smallest projection unity intaining V? A: NOT in general!
. Homogeneigation & affinization an almost inner operations:
Lemmal: (1) Given $F \in K[x_0, \dots, \hat{x}_{k_1}, \dots, x_n]$ we have $(F^h)^{(k)} = F$.
(2) Given $F \in K[x_0, \dots, x_n]$ homogeneous of degree d, we have $(F^{(k)})^h IF$

a equality holds if and may if
$$X_{k}XF$$
. In general: $F = X_{k}^{d}(F^{(k)})^{h}$ with $d = degF - deg f^{(k)}$.

Proof Easy exercise using the definitions.
Exemple:
$$F(x,y,z) = x^{z}z + z^{z}y$$

 $f^{(3)} = x^{z} + y + (F^{(3)})^{h} = x^{2} + zy \neq T \longrightarrow T = z(F^{(3)})^{h}$.
Definition: Given an ideal $\partial x \subseteq IK[x_{1},...,x_{n}]$, we define $\partial x^{h} \subseteq IK[x_{0},x_{1},...,x_{n}]$
as the homogeneous ideal $\partial x^{h} = \langle F^{h} : F \in \partial z \rangle$.

To compute
$$\mathfrak{R}^{h}$$
 it is NOT enough to hanogenize the generators of \mathfrak{R} .
Example: $\mathfrak{R} = \langle \mathfrak{L} - \gamma^{2}, w - \gamma^{3} \rangle \subseteq \mathbb{K}(Y, \mathfrak{L}, w]$
 $J = \langle (\mathfrak{L} - \gamma^{2})^{h}, (w - \gamma^{3})^{h} \rangle \subseteq \mathbb{K}(Y, \mathfrak{L}, w]$
 $\mathfrak{L}^{h}(\mathfrak{L}, \gamma^{2})^{h}(\mathfrak{L}, \gamma^{3})^{h} \rangle \subseteq \mathbb{K}(Y, \mathfrak{L}, w]$
 $\mathfrak{L}^{h}(\mathfrak{L}, \gamma^{2})^{h}(\mathfrak{L}, \gamma^{3})^{h} \rangle \subseteq \mathbb{K}(Y, \mathfrak{L}, w]$
 $\mathfrak{L}^{h}(\mathfrak{L}, \gamma^{2})^{h}(\mathfrak{L}, \gamma^{3})^{h}(\mathfrak{L}, \gamma^{3})^{h}(\mathfrak{L}, \gamma^{3}) = (w - \gamma^{3}) - \gamma(\mathfrak{L}, \gamma^{3}) = w - \gamma \mathfrak{L}^{h}(\mathfrak{L}, \gamma^{3})^{h}(\mathfrak{L}, \gamma^{3})^$

Ų

(1) If [a] $\in H_{k} = \mathbb{P}^{n} \cup_{k}$, then [a] $\in \mathbb{V}_{proj}(\mathbb{Z}_{k})$ so $\mathbb{L}_{a} \subseteq \mathbb{V}_{proj}(\mathbb{X}_{k} \mathcal{S}_{k,j})$

(2) If $Le \in U_{k}$, then $Le \in W_{k} = V(g_{k,j})$ because $F_{k,j} = \frac{g_{k,j}}{\chi_{k}}$ There are the two possibilities, so we are done.

Corollary 1: 3Pⁿ ~ V (5) { S ⊆ K [x] homogeneous defines the Zeniski topology m Pⁿ

5 2 Projective dosces:
Q: How To compute the Earishi doscent
$$\overline{V} \subseteq \mathbb{P}^n$$
 of $V \subseteq \mathbb{A}^n \cong U_0$?
Theorem 2: Given $V \subseteq \mathbb{A}^n \simeq U_0$, $Ut \equiv I(V)$. Then
(1) $\overline{V} = V_{\text{proj}}(I^h) \cong \mathbb{P}^n$
(2) If V is inteducible, so is $\overline{V} \subseteq \mathbb{P}^n$
(3) No ineducible component of \overline{V} lies in the hyperplane the $V_{\text{proj}}(x_0) \in \mathbb{P}^n$.
Basef: Set $W = V_{\text{proj}}(I^n)$. By Proposition 1, it is Eariski dosed on \mathbb{P}^n
(1). By construction $V \subseteq W \cap U_0$ so $\overline{V} \subseteq W$.
To finish, pick any progective reactly Z with $Z \supseteq V$. We will show $Z \supseteq W$.
We write $\overline{Z} = V_{\text{proj}}(F_1, \dots, F_s)$. Since F_i reactives on Z , we have $\overline{F_i}^{(n)} = F_i$ vanishes on W
By construction, $F_i \equiv X_0^{(n)} F_i^{(n)}$ for since $d_0 \ge 0$ so $\overline{F_i}$ reacishes on W
By construction, $F_i \equiv X_0^{(n)} F_i^{(n)}$ for since $d_0 \ge 0$ so $\overline{F_i}$ reacished on W as well
Inclusion: $W \subseteq V_{\text{proj}}(F_1, \dots, F_s) = Z$.

(c) hosene
$$\overline{V} = W_1 \cup W_2$$
 with $W_1, W_2 \subseteq \overline{R}^n$ Zenski doed
Then $V \subseteq \overline{V} \cap U_0 = (W_1 \cap U_0) \cup (W_2 \cap U_0)$ $x \cup (\Omega_0)$ is closed in $U_0 \bigvee i$.
Since V is ineducible we have $V \subseteq W_1 \cap U_0$ or $V \subseteq W_2 \cap U_0$
But then $\overline{U} \subseteq \overline{W_1 \cap U_0} \supseteq \overline{W_1} \supseteq W_1$ (b) is inducible.
(3) We write the ineducible dissipation of $\overline{U} \supseteq W$.
 $W \supseteq W_1 \cup \cdots \cup W_m$ (k)
where W_1 is ineducible at \mathbb{R}^n $\forall i = 1, ..., n$.
Suppose $W_1 \subseteq H_0$ Then $V \subseteq W \cap U_0 = (W_1 \cap \cdots \cap W_m) \cap U_0$
This shows $Z \supseteq W_2 \cup \cdots \cup W_m$ is a projective variety containing V. By (c)
we have $Z \supseteq \overline{V} = W$ so $W_2 \cup \cdots \cup W_m$. Zu,
This implies $W_1 \subseteq W_1$ for some i , so (p) were not the inducible decays.
 $d W (there cannot be any undereduces!)$
But using the any induceduce $V \subseteq W_1 \otimes V \subseteq W_2 \cup \cdots \cup W_m$. Zu,
Thus implies $W_1 \subseteq W_1$ for some i , so (p) were not the inducible decays.
 $d W (there cannot be any undereduces!)$
But is a second $\overline{K} \subseteq W_1$ for $\overline{K} \subseteq K(x_1, -x_1]$ be an ideal. Set $V \subseteq U(a) \subseteq \mathbb{N}^n$.
There $W_1 \oplus \mathbb{N}$ is $\overline{K} = K$ is $X \subseteq K(x_1, -x_2]$ be an ideal. Set $V \subseteq U(a) \subseteq \mathbb{N}^n$.
Substance $W \cap W_1 \subseteq V \in W$ is $\overline{V} \subseteq U_2 \subseteq \mathbb{N}^n$.
There $W_1 = W_1$ will be likensate $J_2 \subseteq W_2 \subseteq \mathbb{N}^n$.
 $\overline{U} = W_1 \oplus W_1 \oplus W_1 \oplus W_2 \subseteq W_2 \oplus \mathbb{N}^n$.
 $\overline{U} = V_{proj}(Z^n) = \overline{V}$ in \mathbb{R}^n ($V \subseteq U_2 \subseteq \mathbb{R}^n$).
 $\overline{U} = V_{proj}(F_1, ..., F_r) = x$ so $K \subseteq \overline{V} \subseteq \mathbb{N}^n \cong \mathbb{N}$.
 $W_2 = V_{proj}(F_1, ..., F_r) = x$ so $F_1 = \overline{T} (1, \frac{Y_1, ..., Y_m}{Y_1, ..., Y_m})$
for a fix methor $N \subseteq W_1 \oplus F_1 \subseteq \mathbb{N}^n \cong \mathbb{N}^n \cong \mathbb{N}$.
 $W_2 = V_{proj}(F_1, ..., F_r) = x \subseteq U(W_2) = \overline{W}$ but $W_1 = W_2$ by $W_1 \subseteq W_2$ by $W_1 \subseteq W_2$ by W_2 .
 $W_2 = V_{proj}(F_1, ..., F_r) = x \subseteq U(W_2) = \overline{W}$ by W_1 .
 $W_2 = V_{proj}(F_1, ..., F_r) = x \subseteq U(W_2) = \overline{W}$ by W_1 .
 $W_2 = V_{proj}(F_1, ..., F_r) = x \subseteq U(W_2) = \overline{W}$ by W_1 .
 $W_2 = V_{proj}(F_1, ..., F_r) = x \subseteq U(W_2) = \overline{W}$ by W_1 .
 $W_2 = V_{proj}(F_1, ..., F_r) = X \subseteq W_1 \oplus W_1$.
 $W_1 = V_1 \in V_1 \oplus V$ is F_1 is F_1 is some $W_1 \ge V_1$.
 $W_2 = V_2 \oplus U_2$ i

In particular
$$(f_{i}^{m_{c}})^{h} = (f_{i}^{h})^{m_{i}} \in \mathscr{X}^{h}$$
 for some $m_{i} \ge 1$.
Since $F_{i} = \chi_{0}^{d_{i}} f_{i}^{h}$ for some m_{i}^{*} , we unclude $F_{i}^{m_{i}} \in \mathscr{X}^{h}$ $\forall i$
Thus, $Z = V_{proj}(\{F_{1}, ..., F_{r}\}) \ge V_{proj}((\mathfrak{A}^{h})) = V_{proj}(\mathscr{X}^{h}) = W$ D
 \bigwedge The statement fails if $\overline{IK} = IK$.
Example: Set $K = \mathbb{R}$ $\mathscr{X} = \langle \gamma_{i}^{2} + \varepsilon^{4} \rangle \subseteq \mathbb{R}(\gamma, \varepsilon_{i}]$. $V(\alpha) = \Im(0)^{j}$