Lecture XX: Projective Morphisms

Up to this point, we discussed the objects in the category of projective varieties. Next task : Describe maps in the category.

SI Function theory in projective varieties:
Recall (Lectures 10, 1121):
Given VEA¹_{1K}, WEA¹_{1K}, we had asked tryps of maps
$$P:V \rightarrow W$$

(1) Hisphirms: $P=(F_1,...,F_m)$ $F_1 \in K_{[V]}$ with $P(V) \subseteq W$.
His $(V,W) = Hm_{K-dy}(K_{[V]},K_{[V]})$
(2) Rational maps: P defined in a lense spec $U \neq V = (\frac{B_1}{h_1},...,\frac{A_m}{h_m})$
with $g_1,...,g_m, h_{1,-...,h_m} \in K_{[V]}$ $h_{1,...,h_m}$ module $0 = M U = P(U) \leq W$.
(so $U \subseteq D(h_1...,h_m))$ function helds
(so $U \subseteq D(h_1...,h_m)$) function helds
 $IF = V,W$ on incluscible. Rat $(V,W) = Hom_{K-dy}(K(W), K(V))$
(s) Regular maps: V, W incluscible a given any $p \in V = U$ open with $p \in U \leq V_{-}$
 $g_{1...,g_m,h_1,...,h_m} \in K_{[U]}$ h_1 nowhere $0 = M U \leq U_{1K}$ for each K , we can use the affine
definitions to determine morphisms/national / negular maps in \mathbb{R}^n a projective
subvarietion of \mathbb{R}^n . The precisely:
 $\frac{Step 1:}{V \cup V_{K}} = \frac{A_{1K}}{V}$ for $k = 0, ..., k$.
 $\frac{Step 2:}{V \cup K} = A_{1K}$ for $k = 0, ..., k$.
 $\frac{Step 2:}{V \cup K} = A_{1K}$ for $k = 0, ..., k$.
 $\frac{K(U_{K})}{V_{1}} = \frac{K(\frac{x_{1}}{V_{1}}, \frac{1}{V_{1}}, \frac{Y_{1}}{X_{K}}} = \frac{K(U_{1})}{V_{1}} = \frac{K(U_{1})}{V_{1}}$.

 $\begin{pmatrix} \frac{x_i}{x_j} \\ x_{y_{x_j}} \end{pmatrix} \begin{pmatrix} x_{y_{x_j}} \\ x_{y_{x_j}} \end{pmatrix}$

i≠j <u>Xi</u> Xk XS/Xk

 $\frac{g_{noof:}}{F_{2}} \cdot \text{The reflexing and symmetric properties are dear (S(V) is a lk-algebra)}$ $\cdot \text{Transitivity will follow from the fact that S(V) is a domain Indeed,}$ $\operatorname{assume} \quad \overline{F_{1}}/\overline{G_{1}} \sim \overline{F_{2}}/\overline{G_{2}} \quad \Leftrightarrow \quad F_{1}G_{2} - F_{2}G_{1} \in I^{h}(V). \quad (\operatorname{Say} \quad \overline{F_{1}} \in S(V)_{d_{1}})$ $\overline{F_{2}}/\overline{G_{2}} \sim \overline{F_{3}}/\overline{G_{3}} \quad \Leftrightarrow \quad \overline{F_{2}}G_{3} - \overline{F_{3}}G_{2} \in I^{h}(V) \quad (\operatorname{Say} \quad \overline{F_{2}} \in S(V)_{d_{2}})$

 $\frac{T_0 \text{ show}}{T_1 G_3} = G_1 F_3 \in J^{4}(V)$

Since
$$\overline{G_2} \neq 0$$
 this mans $G_2 \notin J^h(V)$.
Thus $\overline{G_2(\overline{T}_1G_3 - G_1\overline{F}_3)} = \overline{F_1G_2G_3 - G_1G_2\overline{F}_3} = \overline{F_1G_2} \overline{G_3} - \overline{G_2\overline{F}_3G_1}$
 $= \overline{F_2G_1G_3} - \overline{F_2G_3G_1} = \overline{0} = 0 \text{ in } S(V)$
Since $S(V)$ is a domain a $\overline{G_2} \neq 0$ in $S(V)$ we conclude that $\overline{F_1G_3} - \overline{G_1\overline{F}_3} = 0$
in $S(V)$, ie $\overline{F_1} = \sqrt{F_3} = 1$

Lemma 2:
$$|K(V)|$$
 is a field extension of $|K|$. The over, $\hbar \log(|K(V)||K) \leq n$.
Broof: The field structure is inherited from the structure of $S(V)$ & the grading.
For the degree statement, we give k with $V \cap U_{K} \neq \emptyset$.

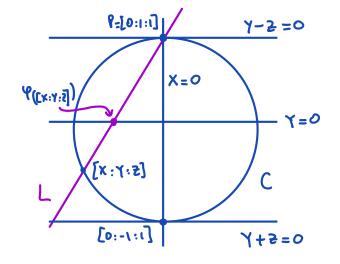
•

Remark: Equivalently,
$$\ell$$
 must be intimuous a brally regular. More precisely, to each
 $k = 0, ..., m$, $\ell(U_k)$ is open in $V \subseteq \mathbb{R}^m$ a for each $j = 0, ..., n$ the maps
 $\ell_{kj} : \frac{V \cap \ell'(U_k) \cap U}{\subseteq \mathcal{A}_{jk}} \longrightarrow W \cap U_k$
 $\subseteq \mathcal{A}_{jk}^m$ $\subseteq \mathcal{A}_{jk}^m$

are regular maps between affine revieties.

$$\begin{array}{cccc} \underline{O}_{n} U_{2} : & \underline{V}_{3} : & \underline{V}_{1} U_{3} & \underline{T}^{\prime} & (issue \ on \ P = (o, i)) \\ & (\underline{\Sigma}, \underline{\Sigma}) & \longmapsto & [\underline{\Sigma}, i - \underline{\Sigma}] \end{array}$$

Germetrically, l'consponds to a stereographic projection from P=[0:1:1]



• Line L through
$$[x:y:z] \& [0:1:1]$$

is $[\lambda x : \lambda y + \mu : \lambda z + \mu] ([\lambda:\mu] \in \mathbb{R}^{1})$
• If $\lambda y + \mu = 0$, then $\mu = -\lambda y \& u e$
 $vdt [\lambda x : 0 : \lambda z - \lambda y] = [\lambda x : \lambda(z-y)]$
this point is $[x: z - y]$
 $(\lambda = 0 \implies \mu = 0$, which is not allowed)

• We can extend 4 to all V by defining $P(p) = [1:0] \in U_0$. <u>Claim</u>: 4 is regular at p. 3F/ Use coordinates $[s:T] \cap \mathbb{R}^{1}$ & analyze $P'(U_0) \longrightarrow U_0 = A_{W}^{1}(word = \frac{T}{5})$ $P'(U_1) \longrightarrow U_1 = A_{W}^{1}(word = \frac{S}{T})$

(1)
$$\varphi''(U_0) = (V \setminus \{ [x:y:z\} | x=0 \}) \cup 3 \varphi \} = V \setminus 3 [0:-1:1] \}$$

Reconn: IF 2-Y=0 = 2+Y=0, then $Y^2 - z^2 = 0$ = $X^2 + Y^2 - z^2 = 0$ for $X = 0$

Since $n \vee w$ have $x^2 = (z-y)(z+y)$ we get $\frac{z-y}{x} = \frac{x}{z+y}$ This expression is valid $n \sim wighterhood of P = \frac{x}{z+y}(p) = 0$ as expected from $\mathcal{P}_{[p]=[1:0]}$

(2)
$$\Psi^{-1}(U_{1}) = V (\zeta [x_{1}y_{1}z_{1}] (z_{2}-y_{1}z_{0}) = V \cdot \zeta [o_{1}:1]$$

 $O_n \Psi'(U_1)$, the map becaus $[X:Y:Z] \longrightarrow \frac{X}{Z-Y}$ this is a national function, defined bruggebore on $\Psi'(U_1)$.

Conclusion: l'is a regular bunction on V, but it is not a rational bunction on V.