Lecture XXI: Projective morphisms II
Recall: Last time we esfimed rational 8 regular maps to \mathcal{A}_{k}^{\prime} fum any $V \subseteq \mathbb{R}^{n}$ inducible projective moiety by fling the wains is the restrictions to all $V \cap U_{k} \subseteq U_{k} \simeq A^{n}$
 (KSimbinite) fo any k with $V \cap U_{k} \neq \varnothing$.
ξ, Rational e regular mas to \mathbb{P}^{m} :

- Regular mops allow as to define ismurphisms between projective varieties:

Definition. A malar map $\varphi: V \rightarrow W$ between inducible proactive revicties is an ismophism if $\exists \Psi: W \longrightarrow V$ regular with $\Psi_{0} \varphi=i d_{V} \& \varphi_{0} \Psi=i d_{w}$ - Tui ineducable pajectise varieties are ismorphic if there exists a ugular ismurplism between them.

Q: Fix $V \subseteq \mathbb{R}^{n}$ inducible. What do maples maps $\varphi: V \longrightarrow \mathbb{R}^{m}$ look like?

$$
[x: y: z] \longrightarrow[x: z-y]
$$

- φ extends to a mules map $n V$ via $\varphi(\rho)=[1: 0]$.

$$
\begin{aligned}
& \varphi^{-1}\left(u_{0}\right)=V \backslash\{[0:-1: 1]\} \quad, \quad \varphi^{-1}\left(u_{1}\right)=V-\{[0: 1: 1]\} \quad R^{\prime}=u_{0} \cup u_{1} \\
& \varphi_{\mid \varphi^{-1}\left(U_{0}\right)}[x: y: z]=\frac{z-y}{x}=\frac{x}{z+y} \quad \text { \& } P \in \varphi^{-1}\left(U_{0}\right) \quad\left(\begin{array}{c}
\left.x^{2}=(z-y)(z+y)\right) \\
m V
\end{array}\right. \\
& \left.\varphi\right|_{y^{-1}\left(v_{1}\right)}[x: y: z]=\frac{x}{z-y}
\end{aligned}
$$

- Q: How to build modular maps $\varphi: V \longrightarrow \mathbb{R}^{n}$ fo $V \subseteq \mathbb{R}^{n}$ pajgectuse variety? - A: In practice, pick $m+1$ homogenates pelymunids $G_{0}, G_{1}, \ldots, G_{m}$ of the same digque ane set $\varphi=\left[G_{0}: G_{1}: \cdots: G_{m}\right]$
Issue: If $V\left(G_{0}, G_{1}, \ldots, G_{m}\right) \cap V \neq \varnothing$ we need T_{0} we it the depmition in $V, V_{\text {pro }}\left(G_{0}, G, \ldots . G_{m}\right)$ con be extended $T_{0} V$. This will depend in V. In most cases, well only get a natural map on V.

Paoprition 1: A natimal map $\varphi: \mathbb{P}_{\mathbb{K}}^{n} \rightarrow \rightarrow \mathbb{P}_{K}^{m}$ cousponds oo a mouphism n

$$
\tilde{\varphi}: \mathbb{A}_{\mathbb{K}}^{n+1} \longrightarrow \mathbb{A}_{\mathbb{K}}^{m+1} \text { giren by } \tilde{\varphi}=\left(F_{1}, \ldots, F_{m}\right) \text { where } F_{1}, \ldots, F_{m}
$$

ane lemosgenses prlymmials in $n+1$ raiables of the same derpee.
Proof: Since we are mapping to $\mathbb{R}_{k k}^{m}$, we car clear derminimators.

- O_{n} an imeducible pioj variety $V \subseteq \mathbb{T}_{\mathbb{K}}^{n}$ we get a similar result.

Propprition 2: If $V \subseteq \mathbb{R}_{\mathbb{k}}^{n}$ is en ineducible projectire vaiety, a Tuple (F_{0}, \ldots, F_{m}) of honogenons pilyumials of the seme degree, not all of which lie in $I^{h}(V)$ detumine a astivaal map $V, \underline{\varphi} \rightarrow \mathbb{R}_{\mathbb{K}}^{m}$ Funthermare, tat ruch pains $\left(F_{i}\right),\left(G_{j}\right)$ ditermine the same ratimal map if $F_{i} G_{j}-F_{j} G_{i} \in I^{h}(v)$ fo all i, s
Prott: O_{n} cach standend ren of $\mathbb{R}_{1 K}^{n}$ we get $\varphi_{\mid \varphi^{-1}\left(v_{i}\right)}: V \cap \varphi_{\left(v_{i}\right)}^{-1} \cdots \cdots>U_{i} \simeq A^{n}$ with $\varphi \left\lvert\, \varphi^{-1}\left(u_{i}\right)=\left(\frac{F_{0}}{F_{i}}, \ldots, \frac{\hat{F}_{i}}{F_{i}}, \cdots, \frac{F_{m}}{F_{i}}\right)\right.$. This is a ratimal map to A^{n}.
Fa the seand pent, we notice that both Tuples define the same map $Y: V \ldots \mathbb{P}^{m}$ iff $\forall_{i}: \frac{F_{i}}{F_{j}}=\frac{G_{i}}{G_{j}} \quad$ on $V \cap \varphi^{-1}\left(U_{j}\right) \forall j \Leftrightarrow F_{i} G_{j}-G_{i} F_{j} \in I^{h}(V) \forall_{i j}$. $\Leftrightarrow \frac{F_{i}}{F_{j}}=\frac{G_{i}}{G_{j}}$ in $K(V)$
Remark: Ratival mops $V \underset{-}{\varphi} \rightarrow W$ with $V \leq \mathbb{B}^{n}, W \leq \mathbb{R}^{m}$ ineducrible uning trum $\left\{\bar{F}_{0}, \ldots, \bar{F}_{m}\left\{\subseteq S(v)_{d}\right.\right.$, not allo, rquires $\left.\varphi_{(v)} \in W \quad \forall r \in V V_{\mid r o j} \mid F_{0}, F_{m}\right)$
§ 2 Examples:

- Next, we gire some examples: of ratimal/uggular maps $\mathbb{P}^{n} \ldots \mathbb{T}^{m}$

Example (1) Limear maps $\varphi_{A}: \mathbb{P}^{n} \ldots \mathbb{R}^{m}$ coreopond T_{0} materices A of singe $(m+1) \times(n+1)$. up T_{0} global scalar
If A has rank $n+1 \leqslant m+1$, then φ_{A} is a maphism. Othenvise, the cordenates here a conmm projectier vanishing bri, so φ is mly natimal $m \mathbb{R}^{n}$
Definition: $\mathbb{P G L} L_{n}=\left\{\right.$ leniar ismorphisons $\left.\mathbb{P}^{n} \longrightarrow \mathbb{P}^{n}\right\}$

- We hase an additival nitim arising fum $P G L_{n}$: projectise equiralence!

Definition: Two varieties $V, V^{\prime} \subseteq \mathbb{P}^{n}$ are projectively equivalent if there is an automorphism $A \in \mathbb{P} G L_{n+1}(\mathbb{K})$ of \mathbb{P}^{n} carrying V into V^{\prime}. Egruinalently ifs $S(V) \& S\left(V^{\prime}\right)$ are ismorphic as paraded \mathbb{K}-algebras. (see Hos)

Remark: Projectively equivalent \Rightarrow ismarphic, but not conversely.
Example (2): (Projection from a point) Consider $P=[0: 0: 1] \in \mathbb{P}^{2} \&$ ret
$\pi: \mathbb{R}^{2} \ldots \mathbb{R}^{\prime}=H_{2} \quad \pi\left(\left[x_{0}: x_{1}: x_{2}\right]\right)=\left[x_{0}: x_{1}\right]$.
The map is not defined at T. It is rational, not defined on P
Restricting π To a were $V=V_{\text {prog }}(F)$ where F is honogemeres of decreed \& $[0: 0: 1] \notin V$ we get a regular map $\varphi=\pi_{\mid V}: V \longrightarrow T^{\prime}$.
Remark: If $\mathbb{K}=\overline{\mathbb{K}} \Delta[a: b] \in \mathbb{P}^{\prime}$ is generic, firm $\varphi^{-1}([a: b])$ consists of d distinct prints. (This will be a consequence of Bezant's Thurem)

1) Rational maps $\mathbb{P}^{n} \ldots, \mathbb{R}^{m}$ can restrict to Angular maps on subvarieties, everen if they mut the bows where the map is not defined.
Example (3) $\quad V=V_{\text {prop }}\left(x z-y^{2}\right) \subseteq \mathbb{R}^{2}$ \& take $\pi: \mathbb{R}^{2}-\cdots \mathbb{R}^{\prime}=H_{2}$ the projection fam $P=[0: 0: 1]$ fum Example (2).
Crim: $\pi_{\mid V}: V \longrightarrow \pi^{\prime}$ is a replay map because $\left(x_{0}, x_{1}\right) \&\left(x_{1}, x_{2}\right)$ determine the same natimal map $t_{0} \mathbb{R}^{\prime}$ on $V . \quad\left(x_{0} \cdot x_{2}-x_{1} \cdot x_{1} \in I^{h}(V)\right)$

A similar poof will yield the following statement (see HWS)
Lemma 1: Assume $\mathbb{K}=\overline{\mathbb{K}}$ \& fix $V=V_{p r o j}|F| \leq \mathbb{P}^{2} \quad$ in F hanogemenes of degree 2. If F is ineducible, then V is ismarphic to \mathbb{R}^{\prime}.

Example (4) The Veronese map
Definition: given $d, n \geqslant 1$ uedifime the Veronese map of decreed in \mathbb{T}^{n} as

$$
\left.\left.\nu_{d}: \mathbb{P}^{n} \longrightarrow \mathbb{T}^{(n+d}\right)^{n}\right)-1 \quad[\underline{x}] \longmapsto\left[\underline{x}^{I}\right]_{I}
$$

where $x^{I}=x_{i_{0}} \cdots x_{i_{n}}$ fo $I=\left\{i_{0}, \ldots, i_{d}\right\} \subseteq\{0, \ldots, n\}$ (I multiset of sised)
The cordinates of $\nu_{d}([X])$ whepond to all manmials of depee d in $n+1$ variables.
This member is $\binom{n+d}{d}$.
Excmple:

$$
\begin{aligned}
\nu_{2}: \mathbb{R}^{\prime} & \longrightarrow \mathbb{P}^{\binom{3}{2}-1}=\mathbb{P}^{2} \\
{\left[x_{0}: x_{1}\right] } & \longmapsto\left[x_{0}^{2}: x_{0} x_{1}: x_{1}^{2}\right]
\end{aligned} \quad \nu_{2}\left(\mathbb{T}^{\prime}\right)=V_{\text {proj }}\left(x z-y^{2}\right) \subseteq \mathbb{R}^{2} .
$$

Some obserrations are in order:
(1) ν_{2} is injectire ($\frac{u_{1}}{u_{0}}$ gises $\frac{x_{1}}{x_{0}}, \frac{u_{2}}{u_{1}}$ gives $\frac{x_{0}}{x_{1}}$ \&. one of these is nongevo)
(2) $v_{2}\left(\mathbb{R}^{\prime}\right)=V_{\text {proj }}\left(u_{0} u_{2}-u_{1}^{2}\right)=: V \leq \mathbb{P}^{2}$
(\leqq) is clion
Fs (\geq) we need the folloing nsults:
Lemma2: $V \subseteq U_{0} \cup U_{2} . \quad\left(U_{i} \subseteq \mathbb{R}^{2} \quad\right.$ standend affime patch $)$
Bnoot: If $u_{0} u_{2}=u_{1}^{2}$ then rither $u_{0} \neq 0$ or $u_{2} \neq 0 \quad\left(\% / \omega[\underline{u}]=[000] \notin \mathbb{R}^{2}\right)$
Lemme 3: There exists a regulon map $\sigma: V \longrightarrow \mathbb{P}^{\prime}$ with $\zeta=y_{2}^{-1}$.
Pnoot: It's enough to defrice it on $U_{0} \& U_{2}$ \& chech it apees on $U_{0} \cap U_{2}$

$$
\begin{aligned}
& \text {. } \zeta_{2}^{(0)}:=\zeta / v_{0}: U_{0} \longrightarrow \mathbb{T}^{\prime} \\
& {\left[u_{0}: u_{1}: u_{2}\right] \longmapsto\left[u_{0}: u_{1}\right]} \\
& \zeta_{2}^{(2)}:=\sigma / v_{2}: u_{2} \longrightarrow \mathbb{T}^{\prime} \\
& \left.\sigma_{2}^{(0)}\right|_{v_{0} \cap v_{2}}=\left.z_{2}^{(2)}\right|_{u_{0} \cap v_{2}} \quad \operatorname{sincu} \quad\left[u_{0}: u_{1}\right]=\left[u_{1}: u_{2}\right] \text { if } u_{0}, u_{2} \neq 0 \\
& 8 u_{0} u_{2}=u_{1}^{2}
\end{aligned}
$$

Indud, $\left(u_{0}, u_{1}\right)=\frac{u_{0}}{u_{1}}\left(u_{1}, u_{2}\right) \& \frac{u_{0}}{u_{1}} \neq 0$ o $v_{2} \cap v_{0} .\binom{u_{1} \neq 0}{$ o $\left.v_{2} \cap v_{0}\right)}$
Conclude: Z_{2} is a rgular map mV
Propsition 3: (1) $\zeta_{2} \circ \nu_{2}=i d^{1}{ }^{\prime}$
(2) $\nu_{2} \circ r_{2}=i d V$

(2)

$$
\begin{array}{rlrl}
\left.\cdot v_{2} \circ b_{2}\right|_{v_{0}} ^{\left(\left[u_{0}: u_{1}: u_{2}\right]\right)} & =\nu_{2}\left(\left[u_{0}: u_{1}\right]\right)=\left[u_{0}^{2}: u_{0} u_{1}: u_{1}^{2}\right]=\left[u_{0}^{2}: u_{0} u_{1}: u_{0}\right] \\
& =\left[u_{0}: u_{1}: u_{2}\right] \\
& \left(u_{0} u_{2}=u_{1}^{2}\right) \text { in } V \\
\left.\cdot v_{2} 0 v_{2}\right|_{v_{2}}\left(\left[u_{0}: u_{1}: u_{2}\right]\right) & =\nu_{2}\left(\left[u_{1}: u_{2}\right]\right)=\left[u_{1}^{2}: u_{1} u_{2}: u_{2}^{2}\right]=\left[u_{0} u_{2}: u_{1} u_{2} u_{2}^{2}\right] \\
& =\left[u_{0}: u_{1}: u_{2}\right] . & u_{1}^{2}=u_{0} u_{2}
\end{array}
$$

Corollary 1: $\quad V=\nu_{2}\left(T^{\prime}\right)$
Proof: Proposition $3(2)$ says $v=\nu_{2}\left(\tau_{2}(v)\right)$ so $v \in \nu_{2}\left(\mathbb{R}^{\prime}\right)$. So $V \subseteq \nu_{2}\left(\pi^{\prime}\right)$. The other inclusion was already known.
The same ideas will work for $\nu_{d}: \mathbb{P}^{\prime} \longrightarrow \mathbb{P}^{d}$.

