Lectere XXII: Projectire Mrphisms III
Last Tine, we showed that angular a rational mays $\varphi: \mathbb{P}^{n} \longrightarrow \mathbb{R}^{m}$ correspnd To Teples of $\mathrm{m}+1$ homoganious polynarials of the same degree.
Restricting these maps to ireducible projective mieties $V \subseteq \mathbb{P}^{n}$ parduces ratevival / ugular map ria a Tuple $f(m+1)$ elements in $S(V)$ d fo sme $d \geqslant 0$.
! Not all ratinal / maplar maps n $V \subseteq \mathbb{P}^{n}$ ane of this fron! (we'll see an example wext - Reqular ismarphisms $\varphi: V \longrightarrow W=$ mgular maps that are imsertitle \& their imelise is also a mgular mep
Q: What happens for natimal maps?
As in the affine case, we can uduce to $\varphi: V \ldots W$ where $V \subseteq \mathbb{P}^{n}, W \subseteq \mathbb{R}^{m}$ are ineducible \& φ is dminant (i.e., anage of φ is dense in W). This will allow
 nom.umpty, bence they ar dense)
Definition: Ginen V, W imeducible projectise vaicties a $\varphi: V \ldots W$ ratimal, we say $\varphi_{\text {is binatimal if } \exists}^{\text {b }} \boldsymbol{\psi}: W \rightarrow V$ ratimal with $\psi_{0} \varphi_{=}$id $V_{V} \varphi_{0} \varphi=i d_{W}$.
We say that lut ineducible projectise vaicties V\&W are binatimal to each other r binatimally ismorphic if $\exists \varphi: \cup \ldots W$ binatinal map.
Example: $\quad \varphi: \mathbb{T}^{2} \ldots \rightarrow \mathbb{R}^{2} \quad \varphi\left(\left[x_{0}: x_{1}: x_{2}\right]\right)=\left[x_{1} x_{2}: x_{0} x_{2}: x_{0} x_{1}\right]=\left[\frac{1}{x_{0}}: \frac{1}{x_{1}}: \frac{1}{x_{2}}\right]$ is an example of a binatimal map of \mathbb{R}^{2}. It's called a Cumona transformatim.
Fun fact: This map sends lines in \mathbb{P}^{2} To cmics in \mathbb{P}^{2}.
Thurem 1: $F\left(x \cup \subseteq \mathbb{P}^{n}, W \subseteq \mathbb{R}^{m}\right.$ ineducible vaieties. Then, $V \& W$ arebinatinally ismorphic if, and sely if, $\mathbb{K}(V)$ \& $\mathbb{K}(W)$ are ismorphic as fields.
Pwoof: We use cordinates $\left[x_{0}: \cdots: x_{n}\right]$ fo \mathbb{P}^{n} \& $\left[y_{0}: \cdots: y_{m}\right]$ fo \mathbb{P}^{m}.
Fix k, l with $V \cap U_{k} \neq \phi$ \& $W \cap U_{l} \neq \phi$. By Coodlaryz $£ 20.1$, we hare

$$
\begin{aligned}
& \mathbb{K}(V) \simeq \mathbb{K}\left(V \cap U_{k}\right)=\mathbb{K}\left(\frac{\overline{x_{0}}}{\frac{x_{k}}{}}, \ldots, \frac{\overline{x_{n}}}{x_{k}}\right) \text { as fields. } \\
& \mathbb{K}(W) \simeq \mathbb{K}\left(W \cap U_{l}\right)=\mathbb{K}\left(\frac{\frac{y_{0}}{y_{l}}}{\frac{y_{m}}{\bar{y}_{l}}}\right)
\end{aligned}
$$

By Coodlary $3 \leqslant 11.2$ the affime raieties $V \cap U_{k} \leq U_{k} \simeq A^{n} \& W \cap U_{l} \& U_{l} \simeq A^{m}$
are binational $\Leftrightarrow K\left(V \cap U_{k}\right) \simeq \mathbb{K}\left(W \cap U_{l}\right)$ as fields.
$\left(\varphi: \cup \cap \cup_{K} \cdots \not \cap \cap U_{l} \Leftrightarrow \varphi^{*}: K\left(W \cap U_{l}\right) \longrightarrow K\left(V \cap U_{k}\right)\right)$ $\frac{f}{\delta} \longmapsto \frac{f \circ \varphi}{8 \circ \varphi}$
Claim: The same map $\varphi: V \cap U_{k} \ldots \ldots W \cap U_{l}$ fires a binational map $\varphi: V \ldots \rightarrow W$ since $V \cap U_{k} \subseteq V$ is a dense open set $m V \& W \cap U_{l} \subseteq W$ is a dense seen set in W

PF/ The is mauphism $\varphi^{k} \mathbb{K}\left(W \cap U_{l}\right) \xrightarrow{\sim} K\left(V_{\cap} U_{k}\right)$ expresses \bar{y}_{j} as a rational function $\frac{f_{j}}{\rho_{l}}\left(\frac{\bar{x}_{0}}{\bar{x}_{k}}, \ldots, \frac{\bar{x}_{n}}{\bar{x}_{k}}\right)$, so $\varphi=\left(\frac{f_{0}}{\rho l}, \ldots, \frac{f_{n}}{\rho e}\right)$ is our map on $V \cap U_{k}$.
$\operatorname{de}\left(\frac{\bar{x}_{0}}{x_{k}}, \ldots, \frac{\bar{x}_{n}}{x_{k}}\right)$ is not identically $0 \mathrm{~m} \mathbb{K}\left[V \cap U_{k}\right]$. miming $\mathrm{fe} \notin I\left(V \cap U_{k}\right)$ To lift this to a catimal map we hnorgemize f_{j} \& $g e$ with respect to X_{k}. This gives

$$
\frac{\bar{y}_{j}}{\bar{y}_{l}}=\frac{\bar{x}_{k}^{d^{\prime}} F_{j}\left(\bar{x}_{0}, \ldots, \bar{x}_{n}\right)}{\bar{x}_{k}^{{ }^{j}} G_{l}\left(\bar{x}_{0}, . ., \bar{x}_{n}\right)} \quad d_{j}=\operatorname{deg} f_{j} \& \quad d^{\prime}=\operatorname{deg} \rho l .
$$

Since F_{j} \& $s e$ are degue 0 rational functions in $\bar{x}_{0} \ldots \bar{x}_{n}$.
setting $A_{l}=x_{k}^{d j} G_{l}$ \& $A_{j}=x_{k}^{d \prime} F_{j} \quad f_{j} \neq d_{d}$ induces a ratemal $\operatorname{map} \quad \varphi: V \ldots, \mathbb{R}^{m} \quad \varphi=\left[A_{0}: \cdots: A_{m}\right]$.
This map is defined m a dense often at of $V \cap U_{k}$, which in Tum is dense in V In particular $\overline{i m}(\varphi)=\overline{\operatorname{lm}\left(\left.\varphi\right|_{V \cap U_{k}}\right)}=\overline{W \cap V_{l}}=W$, so $\varphi: V \ldots W$.
§I The con of $\bar{K}=1 K$:
Exploiting the characterization of \mathcal{O}_{x} fo $x \leq \mathbb{A}_{\mathbb{K}}^{n}$ inducible affine raicty when $\overline{\mathbb{K}}=\mathbb{K}$ (see Theorem 1 5 (3.1) we get:
Therem 2: $F_{1 x} V \leq \mathbb{P}^{n}$ inducible \& $\bar{G} \in S(V)_{d} \backslash 30 \varepsilon$. Then, $\bigoplus_{V}(D(G))$ is the $0^{\text {th }}$ graded piece of the localization $S(V)\left[G^{-1}\right]$. In particular, if $p \in V$ then

$$
{O_{v, p}}^{\sigma_{V \cap u_{k, p}} \simeq K\left[v \cap u_{k}\right] \tilde{m}_{p} .}
$$

for any $k=0, \ldots n$ with $p \in U_{k}$. Here, $\tilde{m}_{p} \subseteq K\left[V_{n} U_{k}\right]$ is the maximal ideal of these ugpules functions on $V \cap U_{k}$ ranching $n P$. (Note: $V \cap U_{k} \subseteq U_{k} \simeq A_{k}^{n}$ is ineducable \& men-emply)

- In particular, we can characterize regular fenctims on \mathbb{P}^{n} if $\overline{\mathbb{K}}=\mathbb{K}$

Goollany 1 : If $\bar{K}=\mathbb{K}$, we hare $\mathbb{O}_{\mathbb{T}^{n}}\left(\mathbb{P}^{n}\right)=\mathbb{K}$
Poof: Take $G=1$ so $S\left(\mathbb{P}^{n}\right)\left[1^{-1}\right]=S\left(\mathbb{P}^{n}\right)=\mathbb{K}\left[x_{0}, \ldots x_{n}\right]$ with the standard rating. The $0^{\text {th }}$ graded piece of $\mathbb{K}\left[x_{0}, \ldots x_{n}\right]$ is \mathbb{K}.

Example: $\sigma_{n} \mathbb{R}^{\prime}: \quad \quad_{\mathbb{T}^{\prime}}\left(U_{0}\right)=\mathbb{K}[z] \quad$ \& $\mathbb{O}_{\mathbb{R}^{\prime}}\left(U_{1}\right)=\mathbb{K}\left[z^{-1}\right]$.
The moly polynomial functions in both $z a z^{-1}$ ane the constant ones.

- Similar unsideratins follow fo a actinal maps.
§2. The $V_{\text {cranes map }}$
Definition: Given $d, n \geqslant 1$ we define the Veronese map_1 dequeed in \mathbb{T}^{n} as

$$
\begin{aligned}
v_{d}: \mathbb{R}^{n} & \left.\longrightarrow \mathbb{T}^{(n+d)}\right)-1 \\
{[\underline{x}] } & \longrightarrow\left[\underline{x}^{I}\right]_{I}
\end{aligned}
$$

where $x^{I}=x_{i_{0}} \cdots x_{i_{d}}$ if $I=\left\{i_{0}, \ldots, i d\right\} \leq\{0, \ldots, n\}$ (I mulliset) we wite $\left({ }^{(n)}+d^{d}\right)$ ifs the member of mullistes $\{\{30, \ldots n\}$ of size d. This member is ($n+d)$. The coordinates of $\nu_{d}([x])$ whenpend to all mammals of dope d $m n+1$ raviables.

Remark: Duped hysessupas in \mathbb{R}^{n} re V prop (F) is F of chequed. They counpend to hyperplane sections of $V_{\perp}\left(\mathbb{P}^{n}\right)$
Special case: $n=1$:

$$
\begin{aligned}
v_{d}: \mathbb{P}^{\prime} & \left.\longrightarrow \mathbb{R}^{(d+1} d^{d}\right)-1
\end{aligned} \mathbb{P}^{d} \quad \text { image is called the animal normal curse }
$$

We write $\left[u_{0}: \ldots: u_{g}\right]$ for a point in \mathbb{P}^{d}
Last tine, we discussed the are $d=2 n=1$ at length. The statement is $d=2$ thansletis To andologoss statements is $d>2$. The precisely,
(1) ν_{d} is injectixe $\left(\frac{u_{1}}{u_{0}}\right.$ gins $\frac{x_{1}}{x_{0}}, \frac{u_{d}}{u_{d}-1}$ gives $\frac{x_{0}}{x_{1}}$ \&. one of these is non geo)
(2) $V=V_{p r o j}\left(\left\{u_{i} u_{j}-u_{k} u_{l}: i+j=k+l\right\}\right) \subseteq \mathbb{P}^{d}$ satisfies $\nu_{l}\left(\mathbb{P}^{\prime}\right)=V$
-($\subseteq)$ is char $\left(u_{i}=s^{d-i} t^{i} \quad \forall i\right)$

- Fo(2) we need the following results:

Lemma.: $V \subseteq U_{0} \cup U_{d .} . \quad\left(U_{i}=\left\{u_{i} \neq 0\right\} \subseteq \mathbb{R}^{2}\right.$ is a standard affine patch $)$
3nof: By contradiction, assume $\exists[a] \in V \backslash\left(U_{0} \cup U_{d}\right)$, so $a_{0}=a_{d}=0$.

- The ulations $u_{0} u_{j}-u_{k} u_{l}=0$ applied $\tau_{0} k=l \leq\left\lfloor\frac{1}{2}\right\rfloor \quad a j=2 k$ give $u_{k}=0$ fo all $0 \leq k \leq\left\lfloor\frac{d}{2}\right\rfloor$
The elaters $u_{d} u_{j}-u_{k} u_{l}=0 \quad$ fo $k=l \geq\left\lfloor\frac{d}{2}\right\rfloor \& j=2 k-d$ give $u_{k}=0$ ir all $\left\lfloor\frac{d}{2}\right\rfloor \leqslant k \leqslant d$.
Conclude: $\underline{u}=0 \in \mathbb{P}^{n}$ contradiction!

Lemma 2: There exists a regular map $\sigma: V \longrightarrow \mathbb{P}^{\prime}$ with $\zeta=y_{d}{ }^{-1}$.
Proof: Since $V \subseteq U_{0} \cup U_{d}$, we need only define the ustridins $\sigma_{0}=\sigma / U_{0}$ \& $\sigma_{d}=\zeta_{U_{d}}$ \& check they ague on $U_{0} \cap U_{d}$

- $F \Omega \zeta_{d}^{(0)}: V \cap \cup_{0} \rightarrow \mathbb{T}^{\prime} \quad \dot{\sigma}_{0}[\underline{u}]=\left[u_{0}: u_{1}\right]$
- Fr $\zeta_{d}^{(1)}: V \cap U_{d} \rightarrow \mathbb{P}^{\prime} \quad \zeta_{d}[\underline{u}]=\left[u_{d-1}: u_{d}\right]$
$Q_{n} U_{0} \cap U_{d}$, both $u_{0}, u_{d} \neq 0$ \& the ralatim $u_{0} u_{d}-u_{1} u_{d-1}=0$ ensenes $\left[u_{0}: u_{1}\right]=\left[u_{d-1}: u_{d}\right]$ in \mathbb{P}^{\prime}.

Conclude: T is a mgular map $n V$
Furthermore, $G \circ \nu_{d}([s: t])=\left\{\begin{array}{lll}{\left[s^{d}: s^{d-1} t\right]=[s: t]} & \text { on } & s \neq 0 \\ {\left[s t^{J-1}: t^{d}\right]=[s: t]} & \text { n } & t \neq 0\end{array}\right.$

Next, we need to check $\gamma_{d} \circ G=i d V$ so $V \subseteq \nu_{d}\left(\mathbb{R}^{\prime}\right)$.

- $\underline{U}_{n} U_{0}: \gamma_{d} 0 b_{d}^{01}([\underline{u}])=\gamma_{d}\left(\left[u_{0}: u_{1}\right]\right)=\left[u_{0}^{d}: u_{0}^{d-1} u_{1}: u_{0}^{2-2} u_{1}^{2}: \cdots: u_{1}^{d}\right]$

Claim: $O_{n} \vee \cap \cup_{0}:\left[u_{0}^{d}: u_{0}^{d-1} u_{1}: u_{0}^{d-2} u_{1}^{2}: \cdots: u_{1}^{d}\right]=u_{0}^{d-1}[\underline{u}]$.
TF/ $\cdot u_{0} u_{2}=u_{1}^{2}$ so $u_{0}^{d-1} u_{2}=u_{0}^{d-2} u_{1}^{2}$水 30$\}$ 。

- $u_{0} u_{3}=u_{1} u_{2}=u_{1} \frac{u_{1}^{2}}{u_{0}}=\frac{u_{1}^{3}}{u_{0}}$ so $u_{0}^{2} u_{3}=u_{1}^{3} m>u_{0}^{d-1} u_{3}=u_{0}^{d-3} u_{1}^{3}$

Indectively onk: $u_{0}^{d-1} u_{k}=u_{0}^{d-k} u_{1}^{k}$

$$
\left(u_{0} u_{k}=u_{1} u_{k-1}{\underset{i}{i}}_{i+} u_{1} \frac{\left(u_{0}^{d-(k-1)} u_{1}^{k-1}\right)}{u_{0}^{d-1}}=u_{1}^{k} u_{0}^{2-k} \text { so } u_{0}^{d-1} u_{k}=u_{0}^{d-k} u_{1}^{k}\right)
$$

- $\underline{0}_{n} U_{1}: \gamma_{d} \circ \underline{c}_{d}^{(1)}([\underline{u}])=\gamma_{d}\left(\left[u_{d-1}: u_{d}\right]\right)=\left[u_{d-1}^{d}: u_{d-1}^{d-1} u_{d}: u_{d-1}^{2-2} u_{d}^{2}: \cdots: u_{d}^{d}\right]$ Claim: $O_{n} \vee \cap U_{1}:\left[u_{d-1}^{d}: u_{d-1}^{d-1} u_{d}: u_{d-1}^{d-2} u_{d}^{2}: \cdots: u_{d}^{d}\right]^{d-1}=u_{n d}^{d-1}[\underline{u}]$.
The aggement is symmentric 5 the me we used stacting frem the lact coridinate $\&$ using $u_{d} u_{d-j-1}=u_{d-1} u_{d-j} \quad \forall j \quad T_{0}$ condude $u_{d}^{d-1} u_{d-j}=u_{d}^{d-j} u_{d-1} j$ Coollary 2: $V_{d}\left(\mathbb{T}^{\prime}\right) \simeq \mathbb{T}^{\prime}$ kence the name natimal.
. The results for $\nu_{d}: \mathbb{T}^{n} \longrightarrow \mathbb{R}^{(n d d)-1}$ ane analogous as those fr $n=1$
Thurem 3: (1) The map Y_{d} is injectire.
(2) The image $\left.\nu_{d} \mid \mathbb{P}^{n}\right)$ is a progectise vaiety in $\mathbb{R}^{(n+d}{ }^{(2)}$. . Funthermure,

$$
\begin{align*}
& V_{d}\left(\mathbb{R}^{4}\right)=V_{\text {proj }}\left(\left\{x^{I} x^{J}-x^{k} x^{L}: I L J=K L L\right\}\right)=: V_{d, n} \tag{*}\\
& \text { Veronese vinety. } \\
& \text { to dilew mplitions }
\end{align*}
$$

We call it the Veronese vinity.
(3) y_{d} is an ismurphism.

Powof The angements are essentially thase pwen the $n=1$ case. The only difficitty is in ding the bookkeeping.
(1) Set $N=\binom{n+d}{d}-1$

- First $\nu_{d}([\underline{x}])=V_{d}([y]) \mathrm{m} \mathbb{P}^{N}$ pres $[\underline{x}] \&[\underline{y}]$ to lie on the same e standard affine patches (since $\exists \lambda \in \mathbb{K} \cdot 30 \%$ with $x_{k}^{d}=\lambda y_{k}^{d} \quad \forall k$) without los of generality, assume $[\underline{x}],[y] \in U_{0}$ \& st $x_{0}=y_{0}=1$.
- Since $\nu_{d}([x])=\nu_{a}[[y])$ m $\mathbb{P}^{n} \quad \exists \lambda \in \mathbb{K}^{*}$ with $\nu_{d}((x))_{I}=\lambda v_{d}\left(r_{y}\right)_{I}$ \forall size a maltiset I $n\{0, \ldots, n\}$.

In particular, $I=\underbrace{\{0, \ldots, 0\}}_{d \text { emus }}$ fires $1=x_{0}^{d}=\lambda y_{0}^{d}=\lambda$ so $\lambda=1$
In tum, $I=\{\underbrace{0,0, \ldots 0}_{d-1}, l\}$ fines $x_{l}=x_{0}^{d-1} x_{l}=\lambda y_{0}^{d-1} y_{l}=1.1^{d-1} y_{l}=y_{l}$ Conduce: $[\underline{x}]=\left[1: x_{1}: \ldots: x_{n}\right]=\left[1: y_{1}: \cdots: y_{e}\right]=[\underline{y}]$. So γ_{1} is injectire.
(2) \& (3): We wite $V_{d}\left(\mathbb{R}^{n}\right) \subseteq(R H S) ~ o f(*)$ by construction. Fo the converse, we follow the same strategy used fo $n=1$
STEP 1: Show $V_{d, n} \subseteq \cup_{0 d} \cup \ldots \cup \cup_{n d}$
SF/ Angle by contradiction + induction on $x+d$
Pick $[4] \in V, \bigcup_{k=0}^{n} U_{k^{d}}$. We break the coordinates of $\mathbb{P}^{(n+2)-1}$ into $I_{j}=\{$ multisets containing j copes of $x\}$
Claim: $u_{I}=0 \quad \forall I \in J_{j} \quad \forall j=0, \ldots-d-1$

- The map is not defined if $X_{I, j[n]}=0 \quad \forall I \in Y_{j}$, so it is ratimal
- By construction: $\pi_{j}\left(V_{d, n}\right) \subseteq V_{d-j, n-1}$.

If $u \in$ Domain of $^{\pi} j$, then $\pi_{j}(\underline{u}) \in \underbrace{V_{d-j, n-1} \bigcup_{K=0}^{n-1} U_{k} d}_{=\varnothing \text { by }(I H)}$ lath.

So $u_{I}=0 \quad \forall I \in Y_{j}$, as we wanted.
Conclude: $u_{I}=0 \quad \forall I \in\binom{[n]+d}{d}$
$\left(u_{n} d=0\right.$ by assumption Q the nest follow by the (aim)
STEP 2 : Define $G_{d}: V_{d, n} \longrightarrow \mathbb{R}^{n}$ ugular \& show $Z_{d}=y_{d}{ }^{-1}$.
If/ We define G_{d} in each affine patch $U_{k} d$ i induct in $n+d$ to show the validity of the statement.

$$
\begin{aligned}
{ }_{d}^{(k)}:\left.\sigma_{d}\right|_{u_{k}}: U_{k}^{d} & {[\underline{u}] }
\end{aligned} \mathbb{P}^{n} \longrightarrow\left[u_{0 k^{d-1}}: u_{1 k^{d-1}}: \cdots: u_{k d}: \cdots \cdot u_{k^{d-1}}\right]
$$

- We need to show G_{d} is a regular map.

Fr this we pick $k \neq l$ \& show $\left.\zeta_{d}^{(k)}\right|_{\subseteq U_{k^{d}}} ^{U_{k^{d}} \cap U_{l^{d}}}=\left.\sigma_{d}^{(l)}\right|_{\subseteq U_{l^{d}}} ^{U_{l^{d} \cap U_{k}^{d}}}$
Using $\left\{\begin{array}{lll}u_{l k^{d-1}} & u_{l^{d-1}}=u_{l} d & u_{k d} \\ u_{l d}^{d} u_{k}^{d-1} s & =u_{l^{d-1} s} u_{k^{2-1} l} & \forall s .\end{array} \quad\right.$ we get that

$$
\left.r_{d}^{(k)}\right|_{U_{k^{d}} \cap U_{l^{d}}}[u]=\left.\zeta_{d}^{(l)}\right|_{U_{l^{d}} \cap U_{k}^{d}}[u] \text { ps all }[\underline{u}] \in U_{k^{d}} \cap U_{e^{d}}=U_{l^{d}} \cap U_{k^{d}}
$$

Indeed:

$$
\begin{aligned}
& {\left[u_{0 k^{d-1}}: \cdots: u_{k^{d}}: u_{k^{d-1} n}\right]=\left[u_{0 k^{d-1}}: \cdots \cdot u_{l k^{d-1}} u_{l^{d-1} k}^{2} u_{k}^{d}: \cdots: u_{k^{d-1}}\right]} \\
& =\left[u_{l}{ }^{d} u_{0 k^{d-1}}: u_{l} d u_{1 k^{d-1}}: \ldots: u_{l k^{d-1}} u_{l^{d-1} k}: \ldots u_{l}: u_{l^{d}} u_{k^{d-1}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[u_{l^{d-1}}: \cdots: u_{l^{d-1}}^{n}\right] \text { once } u_{k^{d-1} l}^{u_{l}} \neq 0 \text { because } \underbrace{}_{\neq 0 \text { on } U_{k} U_{l^{d} k_{k}^{d}} \cap U_{l^{d}} . u^{d-1} u_{k}^{d-1}}
\end{aligned}
$$

- To finish we show that $\zeta_{d}=\nu_{d}^{-1}$. This will inufly $\nu_{d}\left(\mathbb{P}^{n}\right)=V_{d, n}$.
- Uoim1: $\quad \zeta_{d}$ ord $=i d_{\mathbb{P}^{n}}$.

アF/ We check if an each affine patch of \mathbb{P}^{n}. Note: $\nu_{d}\left(U_{k}\right) \subseteq U_{k d}$
So $\left.\zeta_{d} \circ \nu_{d} \mid U_{k}^{[x]}\right]=\left.\left.\zeta_{d}\right|_{u_{k}^{d}} \quad \circ \nu_{d}\right|_{U_{k}}[x]=\left[u_{0 k^{d-1}}: \ldots .: u_{k^{d-1} n}\right]$ where $u_{j k^{d-1}}=\left(y_{d}[x]\right)_{j k}^{d-1}=x_{j} x_{k}^{d-1} \quad \forall j$.
So $\left[u_{0 k}{ }^{d-1}: \cdots: u_{k^{d-1}}^{n}\right]=\left[x_{0} x_{k}^{d-1}: \ldots \cdot x_{n} x_{k}^{d-1}\right]=\left[x_{0}: \cdots: x_{n}\right]$ because $x_{k}^{d-1} \neq 0$ on $U_{k} \subseteq \mathbb{R}^{n}$.

- Claim 2: $\left.\quad \nu_{d} \circ G_{d}\right|_{U_{k^{d}}}([u])=[u]$

Pf/ By construction, $G_{\Sigma}([u]) \in U_{k}=\left\{x_{k} \neq 0 \varepsilon \subseteq \mathbb{P}^{n} \quad\right.$ since $X_{k}=u_{k d}$. $\nu_{d} \circ G_{d}^{(k)}([u])=\left[x^{I}\right]_{I}$ where $x_{i}=u_{i k}{ }^{d-1}$. We need to show $\left[x^{I}\right]_{I}=\left[u_{I}\right]_{I}$ m $\mathbb{T}^{\left(n+\frac{d}{2}\right)-1}$, ie $\exists \lambda \in \mathbb{K}^{x}$ with $x^{I}=u_{I} \forall I \in([n]+d)$.
In particular, is $I=k^{d}$ we set $x^{k^{d}}=\left(x_{k}\right)^{d}=\left(u_{k^{d}}\right)^{d}=\lambda u_{k d} \Leftrightarrow \lambda=u_{k d}^{d-1}$.
We darn: $x_{I}=\left(u_{k^{d}}\right)^{d-1} u_{I} \forall I$
To prose this statement we partition $([n]+d)$ by the member of times k appease in the multiset. More precisely, for each $j=0, \ldots, d$ we define

$$
\left.K_{j}:=3 I \in\binom{[n]+d}{d}: k^{j} \subseteq I \& k^{j+1} \nsubseteq I\right\}
$$

By construction $\bigcup_{j=0}^{d} K_{j}=\binom{[n]+d}{d} \& K_{d}=\{k d\}$.
We prose the statement ($*$) on each K_{j} by ueresse induction in $j \in\{0, \ldots$, d $\}$ using the relations in $V_{d, n}$.

- Base case: $j=d \quad$ Follows ham $x^{k^{d}}=\left(u_{k^{d}}\right)^{d}$.
- Inductive step : Fix 0 0 jed a $I \in K_{j}$ write $\left.I=I^{\prime} \cup 3 k^{j}\right\}$ For $i_{0} \in I^{\prime}$ set $\left.I^{\prime \prime}=I^{\prime} \backslash 3 i_{0}\right\}$
Write $J:=K^{\alpha} \in K_{j}, A:=i_{0} K^{d-1} \in K_{d-1}$ \& $B:=I^{\prime \prime} \cup K^{j+1} \in K_{j+1}$

Since $A \cup B=I \cup J$, the relations on $V_{d, n}$ imply $u_{I} u_{J}=u_{A} u_{B}$
Eprimalently $u_{I}=u_{A} u_{B} / u_{J}$ since $u_{J}=u_{k^{d}} \neq 0 \mathrm{~m} U_{k^{d}}$.
We check the claim on x^{I} using this identity and the definition of νd.

$$
\begin{aligned}
& \begin{aligned}
& x^{I}=x^{I^{\prime}} x^{k^{j}}= x_{i_{0}} x^{I^{\prime \prime}} x_{k}^{j}=u_{i_{0}} k^{d-1} \frac{x^{I^{\prime \prime}} x_{k}^{3} x_{k}^{d}}{x_{k}^{d}}=\underbrace{l_{i 0} k^{d-1} x^{I^{\prime \prime}} x_{k}^{j+1} x_{k}^{d-1}}_{d \geqslant 1} \\
& x_{k}^{d}
\end{aligned}
\end{aligned}
$$

