$$\frac{\lfloor estime XXII : \operatorname{Perfective (II Tephisms III}_{X_0} = \operatorname{Stand} \operatorname{Hat} \operatorname{perfective (II Tephisms III}_{X_0} = \operatorname{Stand} \operatorname{Hat} \operatorname{perfective (II Tephisms III}_{X_0} = \operatorname{Stand} \operatorname{Hat} \operatorname{perfective}_{X_0} = \operatorname{Stand} \operatorname{Hat} \operatorname{stand} \operatorname{Perfective}_{X_0} = \operatorname{Stand} \operatorname{Hat} \operatorname{Perfective}_{X_0} = \operatorname{Stand} \operatorname{Hat} \operatorname{Perfective}_{X_0} = \operatorname{Stand} \operatorname{Stand} \operatorname{Perfective}_{X_0} = \operatorname{Stand} \operatorname{Stand} = \operatorname{Stand} \operatorname{Stand} \operatorname{Perfective}_{X_0} = \operatorname{Stand} \operatorname{Stand} \operatorname{Stand} = \operatorname{Stand} \operatorname{Stand} \operatorname{Stand} = \operatorname{Stand} \operatorname{Stand} \operatorname{Stand} = \operatorname{Stand} \operatorname{Stand} = \operatorname{Stand} \operatorname{Stand} \operatorname{Stand} = \operatorname{Stand} \operatorname{Stand} = \operatorname{Stand} \operatorname{Stand} \operatorname{Stand} = \operatorname{Stand} \operatorname{Stand} \operatorname{Stand} = \operatorname{Stand} \operatorname{Stand} = \operatorname{Stand} \operatorname{Stand} \operatorname{Stand}$$

By Corollary 3 \$ 11.2 the affine mietics VAUKSUK ~ A & WAUESUE ~ A"

are binational (> K(VNUR) ~ K(WNUR) as fields.

<u>Usin</u>: The same map $\Psi: V \cap U_{k} \longrightarrow W \cap U_{\ell}$ gives a binational map $\Psi: V \longrightarrow W$ since $V \cap U_{k} \subseteq V$ is a dense open set $m \vee \mathcal{A}$ $W \cap U_{\ell} \subseteq W$ is a dense open set in \mathcal{V} 3F/ The is morphism 9" IK(WAU) ~> K(VAU) expresses $\frac{y_j}{5e}$ as a national function $\frac{F_{i}}{Se}\left(\frac{\overline{X_{o}}}{\overline{X_{k}}}, \cdots, \frac{\overline{X_{n}}}{\overline{X_{k}}}\right), so \qquad \Psi = \left(\frac{F_{o}}{Se}, \cdots, \frac{F_{n}}{Se}\right) \quad is our map on V \cap U_{K}.$ SR(Xo,..., Xn) is not identically O m K[VAU_], minning Se & I(VAU_) To lift this to a national map we howogeneize by a ge with respect to Xk. This gives $\frac{\overline{J}_{j}}{Jr} = \frac{\overline{x}_{k}}{\overline{x}_{k}} \overline{F_{j}} (\overline{x}_{0}, \dots, \overline{x}_{n}) \qquad d_{j} = d_{i}g f_{j} \quad \& \quad d' = d_{i}g g_{\ell}.$ Since bj & Se are degre 0 ratinal femations in Ko.... Xn. Setting $A_{\ell} = x_{k}^{\dagger} G_{\ell} = A_{j} = x_{k}^{d'} F_{j}$ for $j \neq J$ induces a national may Q: V ---- > R^m Q=[Ao:---: Am]. This may is defined on a dense spon set of VAUK, which in Turn is dense in V In particular in (4) = in (4/VNUR) = WNUR = W, so 4:V--->W. \$1 The case of K=1K: Exploiting the characterization of Ox for X = A'K inclucible affine veniety when IK = IK (see Theorem 1 \$ 13.1) we get : Thurem Z: Fix VER" ineducible & GES(V)2-308. Then, Uy (D(G)) is the Oth graded piece of the localization S(V)[G-']. In particular, if PEV then $\mathcal{O}_{v,p} \simeq \mathcal{O}_{v \cap v_k, p} \simeq K[v \cap v_k] \widetilde{m}_p$

for any k=0,...n with $p\in U_k$. Here, $\widetilde{m}_p \subseteq K[V \cap U_k]$ is the maximal ideal of those regular functions in $V \cap U_k$ ramphing in p. (<u>Note</u>: $V \cap U_k \subseteq U_k \simeq H_k^n$ is ineducible a non-empty) • In particular, we can characterize regular functions on \mathbb{P}^n if $\mathbb{I}K = \mathbb{I}K$ [rollary]: $\mathbb{I}F = \mathbb{I}K = \mathbb{I}K$, we have $\mathcal{O}_{\mathbb{P}^n}(\mathbb{P}^n) = \mathbb{I}K$ $\frac{\mathbb{S}avof}{\mathbb{S}avof}$: Take G = 1 so $S(\mathbb{P}^n)[_{1^{-1}}] = S(\mathbb{P}^n) = \mathbb{I}K[x_{0^{-1}}x_{n}]$ with the standard yording. The O^{t_n} graded field of $\mathbb{I}K[x_{0^{-1}}x_{n}]$ is $\mathbb{I}K$. $\frac{\mathbb{E}xample:}{\mathbb{O}_n \mathbb{R}^l}: \mathbb{O}_{\mathbb{P}^l}(\mathbb{O}_0) = \mathbb{K}[\mathbb{P}^n] = \mathbb{E}[\mathbb{P}^n(\mathbb{O}_l) = \mathbb{E}[\mathbb{P}^{-1}]$. The ruley golynomial functions in both $\mathbb{E} \ge \mathbb{E}^{-1}$ are the constant ones. • Similar unsiderations follow for extirnal maps.

\$2. The Vernese map: Definition: given 2, n 21 we define the <u>Unouse map of dequed</u> on R" as $V_d: \mathbb{R}^n \longrightarrow \mathbb{R}^{\binom{n+d}{d}-1}$ $[\underline{x}] \longrightarrow [\underline{x}_{r}]^{T}$ where $x^{T} = x_{i_0} \cdots x_{i_d}$ for $T = \frac{1}{2}i_0, \dots, i_d \in \frac{1}{2} \leq \frac{1}{2}0, \dots, n \in (I \text{ multiset})$ we write $\binom{Cn_{j+d}}{2}$ for the member of multisets of $\frac{1}{2}0, \dots, n \in \mathcal{O}$ firs number is $\binom{n+d}{d}$. The coordinates of V2 ([x]) wrespond to all monomials of degree I in n+1 variables. Remark. Degree & hypersurfaces in R" are Vproj (F) for Fol degree d. They correspond to hyperplane sections of V_ (P") Special case : n=1: image is called the <u>national normal curve</u> in TP². $\mathcal{V}_{d}: \mathbb{R}' \longrightarrow \mathbb{R}^{\binom{d+1}{d}-1} = \mathbb{R}^{d}$ $[s:t] \longrightarrow [s^d:s^{d-1}t:\ldots:t^d]$ We write [uo:...:us] for a point in PC Last Time, we discussed the are d=2 n=1 at length. The statement for d=2 translates To analogous statements for d>2. The precisely,

(1)
$$Y_{2}$$
 is injective $\left(\begin{array}{c}u_{1}\\u_{0}\end{array}\right)$ sizes $\frac{\chi_{1}}{\chi_{0}}$, $\frac{u_{2}}{u_{2-1}}$ sizes $\frac{\chi_{0}}{\chi_{1}}$ e. one of these is non-zero)
(2) $V = V_{\text{proj}}\left(\left\{u_{1}u_{1}^{\prime}-u_{k}u_{k}^{\prime}\right\} : i+j=k+l\right\}\right) \subseteq \mathbb{R}^{d}$ satisfies $Y_{2}(\mathbb{R}^{l})=V$
 $\cdot (\subseteq)$ is char $\left(\begin{array}{c}u_{1}^{\prime}=s^{d-i}t^{i} & \forall i\end{array}\right)$
 $\cdot \mathcal{F}_{0}(\supseteq)$ we need the following results:

Lemma 1.
$$V \subseteq U_0 \cup U_d$$
. $(U_i = Su_i \neq o \} \subseteq \mathbb{R}^d$ is a standard a binne patch)
Snoof: By untradiction, assume $\exists [a] \in V \setminus (U_0 \cup U_d)$, so $a_0 = a_d = 0$.
The relations $u_0 u_j - u_k u_k = 0$ applied to $k = k \leq \lfloor \frac{d}{2} \rfloor$ $k = j = 2k$
give $u_k = 0$ for all $0 \leq k \leq \lfloor \frac{d}{2} \rfloor$.
The relations $u_d u_j - u_k u_k = 0$ for $k = k \geq \lfloor \frac{d}{2} \rfloor$ $k = j = 2k - d$
give $u_k = 0$ for all $\lfloor \frac{d}{2} \rfloor \leq k \leq d$.
Conclude: $u_i = 0 \in \mathbb{R}^n$ intradiction J .

Lemma 2: There exists a regular map
$$\mathcal{B}: \mathcal{V} \longrightarrow \mathbb{R}^{l}$$
 with $\mathcal{B}=Y_{d}^{-l}$.
Snoof: Since $\mathcal{V} \subseteq \mathcal{V}_{0} \cup \mathcal{V}_{d}$, we need ruly define the noticities $\mathcal{B}_{0}=\mathcal{B}[\mathcal{V}_{0}\mathcal{R}$
 $\mathcal{B}_{d}=\mathcal{B}[\mathcal{V}_{d}\mathcal{R}$ check they agree in $\mathcal{V}_{0} \cap \mathcal{V}_{d}$
. For $\mathcal{B}_{d}^{(0)}: \mathcal{V} \cap \mathcal{V}_{0} \longrightarrow \mathbb{R}^{l}$ $\mathcal{B}_{0}[\mathfrak{U}] = [\mathcal{U}_{0}:\mathcal{U}_{1}]$
. For $\mathcal{B}_{d}^{(0)}: \mathcal{V} \cap \mathcal{V}_{d} \longrightarrow \mathbb{R}^{l}$ $\mathcal{B}_{d}[\mathfrak{U}] = [\mathcal{U}_{d-1}:\mathcal{U}_{d}]$
On $\mathcal{V}_{0} \cap \mathcal{V}_{d}$, both $\mathcal{U}_{0}, \mathcal{U}_{d} \neq 0$ & the inlation $\mathcal{U}_{0}\mathcal{U}_{d} - \mathcal{U}_{1}\mathcal{U}_{d-1} = \mathcal{D}$
ensures $\mathcal{L}\mathcal{U}_{0}:\mathcal{U}_{1}] = [\mathcal{U}_{d-1}:\mathcal{U}_{d}]$ in \mathbb{R}^{l} .

$$\frac{\text{(mclude : G (s a ngular map m V)}}{\text{Furthermore, Gov_d([s:t])} = \left\{ [s^d : s^{d-1}t] = [s:t] \text{ on } s \neq 0 \\ [st^{d-1}: t^d] = [s:t] \text{ on } t \neq 0 \right\}$$

Next, we need to check $\gamma_{d} \circ \mathcal{G} = id_{V}$. so $V \subseteq \gamma_{d}(\mathbb{R}^{1})$. • $\underline{U}_{n}U_{0}$: $\gamma_{d}\circ \mathcal{G}([\underline{u}]) = \gamma_{d}([\underline{u}_{0}:\underline{u}_{1}]) = [\underline{u}_{0}^{d}:\underline{u}_{0}^{d-1}\underline{u}_{1}, \underline{u}_{0}^{d-2}\underline{u}_{1}^{d}:\cdots:\underline{u}_{1}^{d}]$ <u>Ulain</u>: On VAU₀: $[u_0^{d}: u_0^{d-1}u_1: u_0^{d-2}u_1^{2}: \dots: u_1^{d}] = u_0^{d-1} [u_1].$ Inductively m_k : $u_0^{d-1}u_k = u_0^{d-k}u_1^k$ $\begin{pmatrix} u_{0} u_{k} = u_{1} u_{k-1} = u_{1} \begin{pmatrix} u_{0}^{d-(k-1)} & k-1 \\ u_{0} & u_{1} \end{pmatrix} = u_{1} & u_{0}^{d-1} & k \\ H & U_{0}^{d-1} & u_{0}^{d-1} \end{pmatrix} = u_{1} & u_{0}^{d-1} & u_{0}^{d-1} & u_{0}^{d-1} & u_{0}^{d-1} \end{pmatrix}$ • $U_n U_1$: $Y_d \circ G'([u]) = Y_d ([u_{d-1}:u_d]) = [u_{d-1}^d : u_{d-1}^{d-1}u_d : u_{d-1}^{d-2}u_d^2 : \cdots : u_d^d]$ <u>Ulaim</u>: $U_n V \cap U_1$: $[u_{d-1}^{d}: u_{d-1}^{d-1}u_d: u_{d-1}^{d-2}u_d^2: \dots u_d^d] = u_d^{d-1} [u_1].$ The argument is symmetric to the me we used starting from the last coordinate 8 using $u_d u_{d-j-1} = u_{d-1} u_{d-j}$ $\forall j$ To conclude $u_d^{d-1} u_{d-j} = u_d u_d^{d-j}$ Corollary 2: $V_{\mathcal{C}}(\mathbb{R}') \simeq \mathbb{R}'$ hence the name national. . The results for $Y_2: \mathbb{R}^n \longrightarrow \mathbb{R}^{\binom{n+2}{d}-1}$ are enalogous as those for n=1Thurem 3: (1) The map Y2 is injective. (c) The image ve (TPM) is a projective miety in R . Furthermore, We call it the Veronese miety. (3) Yz is an ismorphism. Broof The arguments are essentially those from the n=1 case. The ruly difficulty is in Loing the 600k keeping.

- (1) Set $N = \binom{n+d}{d} 1$
- First $V_{d}([X]) = V_{d}([Y]) \in \mathbb{P}^{N}$ france $[X] \ge [Y]$ to lie on the same standard athing patches (since $\exists \lambda \in \mathbb{K} \setminus \{0\}$ with $X_{K}^{d} = \lambda y_{K}^{d} \forall k$) without loss of generality, assume $[X], [Y] \in U_{0} \otimes \mathbb{R}$ at $x_{0} = y_{0} = 1$.

In particular,
$$I = \{0, \dots, 0\}$$
 gives $1 = x_0^d = \lambda y_0^d = \lambda$ so $\lambda = 1$
In turn, $I = \{0, 0, \dots, 0\}$ gives $x_e = x_0^{d-1} x_e = \lambda y_0^{d-1} y_e = 1 \cdot 1^{d-1} y_e = y_e$
Leader: $[x] = \{1:x_1:\dots:x_n\} = \{1:y_1:\dots:y_e\} = \{y\}$. So Y_1 is imjective.

(2)
$$g(3)$$
: We note $V_{d}(\mathbb{R}^{n}) \subseteq (\mathbb{R}HS)$ of $(*)$ by construction. For the converse, we follow the same staategy used for $n=1$
STEP1: Show $V_{d} \subseteq U_{d}$, $U = U_{d}$, $U = U_{d}$

SF/ Argue by intradiction + induction on n+2
Sich
$$(u_j \in V \setminus \bigcup_{K=0}^{n} \bigcup_{k=1}^{n} \bigcup_{j=1}^{n} \bigcup_{k=1}^{n} \bigcup_{j=1}^{n} \bigcup_$$

The map is not defined if × Inj[n] = 0 ¥ IE Jj, so it is national J
By construction: Tij(V₂,n) ⊆ V₂-j,n-i.

$$J \vdash u \in Dmain of TC;, \quad then \quad T(\underline{u}) \in V_{d-j, n-1} \cup U_{kd}$$
$$= \mathcal{D} \quad L_{2}(\underline{u}) \quad (\underline{u})$$

So
$$u_{\mathbf{T}} = 0$$
 $\forall \mathbf{T} \in \mathcal{J}_{j,00}$ is united.

$$\underbrace{\operatorname{Indude}_{\mathbf{x}}: u_{\mathbf{T}} = 0 \quad \forall \mathbf{T} \in \binom{[n]_{\mathbf{x}}}{2} \quad (u_{\mathbf{x}}) = u_{\mathbf{x}} + \operatorname{Jelew}_{\mathbf{x}} + \operatorname{Jelew}_{\mathbf{x}$$

• Claim 1:
$$\overline{b}_{k} \circ \overline{v}_{k} = (d_{\mathbb{P}^{n}} \cdot \frac{3F}{W})$$

 $\overline{3F}/W_{k}$ check if m each affine patch of \mathbb{P}^{n} . Note: $\overline{V}_{k}(U_{k}) \subseteq U_{k}$
So $\overline{b}_{k} \circ \overline{V}_{k}(U_{k}) \subseteq \overline{b}_{k} = \overline{b}_{k}(U_{k}) \subseteq V_{k}(U_{k}) \subseteq U_{k}$
where $u_{jk}^{k-1} = (V_{k}(x))_{jk}^{k-1} = x_{j}^{k} x_{k}^{k-1} \quad \forall j$.
So $[u_{0k}^{k-1} : \cdots : u_{k}^{k-1}] = [x_{0} \times \frac{k^{k-1}}{k} : \cdots \times x_{n} \times \frac{k^{k-1}}{k}] = [x_{0} : \cdots : x_{n}]$
become $[x_{k}^{k-1}] \neq 0$ on $U_{k} \subseteq \mathbb{R}^{n}$.
• Claim 2: $V_{k}^{k} \circ \overline{b}_{k}(U_{k}) = [u]$
 $\overline{3F}/B_{j}$ construction, $\overline{b}_{k}(U_{k})] = [u]$
 $\overline{3F}/B_{j}$ construction, $\overline{b}_{k}(U_{k})] = [u]$
 $m \mathbb{P}^{\binom{n+k}{k}-1}_{j}$ is $\exists x \in \mathbb{K}^{n}$ with $x^{k} = u_{k} + 1$. We used to show $[x^{k}]_{j} = [u_{j}]_{j}$
in $\mathbb{P}^{\binom{n+k}{k}-1}_{j}$ is $\exists x \in \mathbb{K}^{n}$ with $x^{k} = (x_{k})^{k} = (u_{k})^{k} = \lambda u_{k}^{k}$ so $x = u_{k}^{k+1}$.
We chaim: $x_{j} = (u_{k})^{d-1}u_{j}$ (k)

To prove this statement we partition $\binom{n+d}{d}$ by the number of times k appears in the multiset. Now precisely, for each j=0,...,d we define

$$\mathcal{K}_{j} := \Im I \in \binom{(n) + \ell}{d} : k^{j} \in I = k^{j+1} \notin I$$

By construction
$$\bigcup_{j=0}^{d} \mathcal{K}_{j} = \binom{(n) + d}{d} = \mathcal{K}_{d} = \Im k^{d}$$

We prove the statement (\mathbf{x}) on each \mathcal{K}_j by reverse induction $\mathbf{M}_j \in \{0, \dots, d\}$ using the relations in $V_{d,n}$.

• Base cone :
$$j=d$$
 Follows from $\chi^{kd} = (\mu_{kl})^{d}$
• Inductive Step : Fixoej\in \mathcal{R}_{j} write $I = I' \cup jk^{j}$
For $i_{0} \in I'$ set $I'' = I' \cdot ji_{0}$
Write $J := k^{d} \in \mathcal{R}_{j}$, $A := i_{0} k^{d-1} \in \mathcal{R}_{d-1}$ & $B := I'' \cup k^{j+1} \in \mathcal{R}_{j+1}$

Since
$$AUB = IUJ$$
, the relations on $V_{d,N}$ imply $u_{I} u_{J} = u_{A}u_{B}$
Equivalently $u_{I} = u_{A}u_{B}/u_{J}$ since $u_{J} = u_{kl} \neq 0$ on U_{kd} . (**)
We check the claim on x^{I} using their identity and the definition of y_{d} .
 $x^{I} = x^{I'} x^{k'} = x_{i0} x^{I''} x_{k}^{j} = u_{i0}K^{d_{-1}} \frac{x^{I''} x_{k}^{j} x_{k}^{d}}{x_{k}^{d}} = u_{i0}K^{d_{-1}} \frac{x^{I''} x_{k}^{j} x_{k}^{j}}{x_{k}^{d}} = u_{i0}K^{d_{-1}} \frac{x^{I''} x_{k}^{j}}{x_{k}^{d}} = u_{i$