Lecture XXIII: Products of Varieties a the Segre embedding
Recall: In on wishlist pr properties of affine reties, we wanted to have fiber proshects. For this to happen, we need products of varieties to be varieties, beth in the affine and the projective case. Later M, well discuss the situation of abstract varieties (obtained by gluing affine varieties)

S1 Products of Affine varieties:
Recall: $\mathbb{A}^{m} \times \mathbb{A}^{n}$ cam be viewed as the affine reiety \mathbb{A}^{n+m} ria the map:

$$
\begin{aligned}
& \mathbb{A}^{m} \times \mathbb{A}^{n} \longrightarrow \mathbb{A}^{n+m} \\
& (\underline{x}, y) \quad \longmapsto(\underline{x}, y)
\end{aligned}
$$

Similarly, if $V \subseteq \mathbb{A}^{m}, W \subseteq \mathbb{A}^{n}$ are affine varieties, we can icu the set $V \times W$ as an affine variety m A^{n+m}. Indeed

$$
\begin{aligned}
& \text { Proof: }(\underline{x}, h) \in V \times w \Leftrightarrow \underline{x} \in V \quad \& y \in W \Leftrightarrow h(\underline{f}(\underline{x})=0 \quad \forall f \in I(V) \\
& \partial(y)=0 \quad \forall g \in I(w) \\
& \Rightarrow h(\underline{x}, \underline{y})=0 \quad \forall h \in I \\
& \text { defoe }
\end{aligned}
$$

Fo the causeuse, we show $V(I) \subseteq V \times W$
Since $I(V) \mathbb{K}\left[x_{1}, \ldots x_{n+m}\right] \subseteq I$, then $V(I) \subseteq V\left(I(V) \mathbb{K}\left[x_{1} ; \cdots x_{n+m}\right]\right)$

$$
I(w) \mathbb{K}\left[x, \ldots, x_{n+m}\right] \subseteq I \text { then } \begin{aligned}
V(I) \subseteq & V\left(I(W) \mathbb{K}\left(x_{1} ; \ldots x_{n+m}\right]\right) \\
& =A^{m} \times W
\end{aligned}
$$

Thus $V(I) \subseteq\left(V \times A^{n}\right) \cap\left(\mathbb{A}^{m} \times W\right)=V \times W$.
§2. Safe embeddings:
! The map $\mathbb{A}^{m} \times \mathbb{A}^{n} \longrightarrow \mathbb{A}^{n+m}$ does not extend to a map $\mathbb{R}^{m-1} \times \mathbb{P}^{n-1} \rightarrow \mathbb{P}^{m+n-2}$ since the scalars used in the definition of $\mathbb{R}^{n-1} \& \mathbb{R}^{m-1}$ are separated

$$
(x, y) \sim(\lambda x, \mu y) \longmapsto(\lambda x, \mu y) \nsim[x ; y] \quad \text { is } \lambda, \mu \in \mathbb{K}^{*} \text {. }
$$

- A map $\mathbb{P}^{n} \times \mathbb{P}^{n n} \longrightarrow \mathbb{R}^{N}$ will weed interaction between the coordinates of $\mathbb{P}^{n} \& \mathbb{P}^{m}$. This is precisely what Segre embeddings do:

Definition: The Segre embedding is the set map

$$
\begin{aligned}
\sigma_{m, n}: \mathbb{P}^{m} \times \mathbb{P}^{n} & \longrightarrow \mathbb{P}^{(n+1)(m+1)-1} \\
{[[x],[y]] } & \longmapsto\left[x_{i j} j_{j}\right]_{i, j}
\end{aligned}
$$

We label the ordinates of $\mathbb{R}^{(n+1)(m+1)-1}$ as $\left(z_{i j}\right)_{i, j}$
Lemma 1: $\sigma_{m, n}$ is well-defined
BF/ $\sigma_{m, n}(([\lambda \underline{x}],[\mu \underline{y}]))=\left[\lambda \mu x_{i} y_{j}\right]_{i, j} \stackrel{\lambda \mu \neq 0}{\stackrel{1}{=}}\left[x_{i} y_{j}\right]=\sigma_{m, n}([x],(y])$ fo each $\lambda, \mu \in \mathbb{K}^{*}$.

Example: $n=m=1 \quad \sigma_{1,1}\left(\underset{\mathbb{T}^{\prime}}{\left[x_{0}: x_{1}\right]},\left[y_{0}: y_{1}\right]\right)=\left[x_{0} y_{0}: x_{0} y_{1}: x, y_{0}: x_{1} y_{1}\right] \in \mathbb{R}^{3}$

Nae: : A line $3 a \zeta \times \mathbb{R}^{1}$ maps to a line $\left[a_{0} y_{0}: a_{0} y_{1}: a_{1} y_{0}: a_{1} y_{1}\right]$ in \mathbb{R}^{3}

$$
=\underset{v_{v_{1}}}{y_{0}\left[a_{0}: 0: a_{1}: 0\right]+y_{1}\left[0: a_{0}: 0: a_{1}\right]} \underset{v_{2}}{u}
$$

where $\left[y_{0}: y,\right] \in \mathbb{R}^{\prime}$. By construction, $\left\{v_{1}, v_{2}\right\}$ are limarly independent ore \mathbb{K} - Similarly, a line $\mathbb{P}^{\prime} \times 36$ maps to the line $x_{0}\left[b_{0}: b_{1}: 0 ; 0\right]+x_{1}\left[0: 0: b_{0}: b_{1}\right]$ $m \mathbb{P}^{3}$, where $\left[x_{0}: x_{1}\right] \in \mathbb{T}^{\prime}$ \& $\left\{\omega_{1}, \omega_{2}\right\}$ are l.i oven \mathbb{K}.
 because we can build $\zeta_{1,1}=\sigma_{1}, 1: V \longrightarrow \mathbb{R}^{\prime} \times \mathbb{T}^{\prime}$
In addition, the 2 families of lives constructed above lie in V. They are known as the ulings_of the quadric hypensufface V

- Next, we build the map 61,1 ; m each chart of \mathbb{P}^{3} :
. On $U_{i j}=\left\{z_{i j} \neq 0\right\} \subseteq \mathbb{R}^{3} \quad i, j=0 r 1$, we define $G_{i, 1}^{(i j)}=G_{1,1} \mid U_{i j}$ exploiting on underlying assumption that $z_{i j}=x_{i} y_{j}$ on un $\left(\sigma_{1,1}\right)$. Thus we will be able to extract a factor y_{j} fum the first entry pain of $\zeta_{1,1}^{(i, j)}$ \& a factor x_{i} han the second entry pair.

More precisely,

$$
\begin{aligned}
& \zeta_{1,1}^{(0,0)}([z])=\left(\left[z_{00}: z_{10}\right],\left[z_{00}: z_{01}\right]\right) \\
& \zeta_{1,1}^{(0,1)}([z])=\left(\left[z_{01}: z_{11}\right],\left[z_{00}: z_{01}\right]\right) \\
& \zeta_{1,1}^{(1,0)}([\underline{z}])=\left(\left[z_{00}: z_{10}\right],\left[z_{10}: z_{11}\right]\right) \\
& \zeta_{1,1}^{(1,1)}[[z])=\left(\left[z_{01}: z_{11}\right],\left[z_{10}: z_{11}\right]\right)
\end{aligned}
$$

- Claim 1: $\sigma_{1,1} \circ G_{1,1}=i d_{V} \quad\left(\Rightarrow V \subseteq \operatorname{im}\left(\sigma_{1,1}\right)\right)$

アF/ We show $\left.\sigma_{1,1} \circ \sigma_{1,1}\right|_{v_{i j}}=i d v_{n} v_{i j}$ by working n each chart $u_{i j}$ of \mathbb{P}^{3}.
For example, $\sigma_{1,10} b_{1,1}^{(0,0)}=$ id $U_{00} \cap V \operatorname{sinc} z_{0,} z_{10}=z_{00} z_{11}$ o $U_{00} \cap V$

$$
\begin{aligned}
& \sigma_{1,10} \zeta_{1,1}^{(0,0)}([z])=\sigma_{1,1}\left(\left[z_{00}: z_{10}\right],\left[z_{00}: z_{01}\right]\right)=\left[z_{00}^{2}: z_{00} z_{01}: z_{10} z_{00}: z_{01} z_{10}\right] \\
&=\left[z_{00}^{2}: z_{00} z_{01}: z_{00} z_{10}: z_{00} z_{11}\right]=[\underline{0}] . \\
& z_{00} \neq 0
\end{aligned}
$$

On the other patches, the cmputatim is similar, we set $\left[z_{i j} z\right]=[z]$ since $z_{i j} \neq 0$ o $U_{i j}$.

- Claim 2: $\quad \sigma_{1,1} \circ \sigma_{1,1}=i d \mathbb{R}^{\prime} \times \mathbb{R}^{\prime}$.
$P F \mid W_{l}$ check that this is The on each sit $U_{i} \times U_{j} \subseteq \mathbb{R}^{\prime} \times \mathbb{P}!$. Since the rets cores $\mathbb{R}^{\prime} \times \mathbb{P}^{\prime}$, this is enough. Note that $\sigma_{1,1}\left(U_{i} \times U_{j}\right) \subseteq U_{i j}$ so we moly need to show $\zeta_{1,1}^{(1 j)} 0 \sigma_{1,1} l_{v_{i j}}=i d_{v_{i \times} \times j}$. We do this calculation n each af
the 4 cases.
For example, $\zeta_{1,1}^{(0,0)} \circ \sigma_{1,1} \mid \cup_{0} x U_{0}([\underline{x}],[y])=\zeta_{1,1}^{(0,0)}\left(\left[x_{0} y_{0}: x_{0} y_{1}: x, y_{0}: x, y,\right]\right)$

$$
\begin{aligned}
& =\left(\left[x_{0} y_{0}: x_{1} y_{0}\right],\left[x_{0} y_{0}: x_{0} y_{1}\right]\right) \\
& \bar{j}\left(\left[x_{0}: x_{1}\right],\left[y_{0}: y_{1}\right]\right) \\
& x_{0}, y_{0} \neq 0
\end{aligned}
$$

On the other charts we get a similar situation; we will be off by a factor of y j in the first entry, 2 by x_{i} in the second entry. These scalars are ungero, so they can be nemoored.

$$
\sigma_{1,1}^{(i, j)} \circ \sigma_{1,1} \operatorname{lu}_{i} x u_{j}([x],[y])=\left(\left[x_{0} y_{j}: x_{1} y_{j}\right],\left[x_{i} y_{0}: x_{i} y_{1}\right]\right)=([\underline{x}],(y])
$$

- The statements os general m an are similar:

Thurem 1: The map $\sigma_{n, m}$ gives a bijection between $\mathbb{P}^{m} \times \mathbb{R}^{n}$ and the profectere variety $V=V(I) \subseteq \mathbb{P}^{m n+m+n}$, where $I \subseteq \mathbb{K}\left[z_{i j}=\begin{array}{c}i=0, \ldots, m] \\ j=0, \ldots, n\end{array}\right]$ is the
(homognions) ideal $I=\left\langle z_{i j} z_{k l}-z_{i l} z_{k j}\right.$ fr $\begin{array}{l}i \neq k \\ j \neq l \\ j \neq k \in\{0, \ldots m .\}\rangle \\ j, l \in\{0, \ldots, n\}\end{array}$ Mouser V is inducible.

We define it on each wordinate patch $U_{k, l}$ of $\mathbb{P}^{m n+m+n}$.

$$
\begin{aligned}
& \zeta_{m, n}^{(k, l)}=\left.{ }^{\sigma_{m, n}}\right|_{V_{\cap} U_{i, l}}: V \cap U_{k, l} \longrightarrow \mathbb{P}^{m} \times \mathbb{T}^{n} . \\
& \underline{Z} \longmapsto\left(\left[z_{i l}\right]_{i=0}^{m} ;\left[z_{k j}\right]_{j=0}^{n}\right)
\end{aligned}
$$

- Claim 1. The map is well-defined, ie, it agrees m the sululaps.

BF/ To pare this, we analyse 3 cases:
(1) $\zeta_{m, n}^{(k, l)}=\zeta_{m, n}^{(k, q)} \quad m \quad V \cap U_{k l} \cap U_{k j} \quad \& q \neq l$.

We need sly check the $1^{s t}$ coordinate ie wired to check $\left[z_{i l}\right]_{i=0}^{m}=\left[z_{i \rho}\right]_{i=0}^{m}$ in 7^{m} for all $z \in V \wedge U_{k e} \cap U_{k g}$.
The culations on V essene that $z_{i l} z_{k q}-z_{i q} z_{k l}=0$
Since $z_{k e,} z_{k q} \neq 0 \mathrm{~m} \cap U_{k l} \cap U_{k f}$ we gt $z_{i l}=\frac{z_{k l}}{z_{k q}} z_{i q} \quad \forall i=0, . ., m$
Thus $\left[z_{i} l\right]_{i}=\left[z_{i q}\right]_{i}$ in \mathbb{P}^{m}.
(2) $\zeta_{m, n}^{(k, l)}=\zeta_{m, n}^{\left(p_{r l}\right)} \quad m \quad \vee \cap U_{k l} \cap U_{p l}$ is $p \neq k$.

We need all check the $2^{n d}$ coordinate ie we need to check $\left[z_{k j}\right]_{j=0}^{n}=\left[z_{p j}\right]_{j=0}^{n}$ in ∇^{n}
fr all $z \in V \cap U_{k l} \cap U_{p l}$.
The elation on V insure that ${ }^{z_{P j}} z_{k l}-z_{p l} z_{k j}=0$
Since $z_{k l,} z_{p l} \neq m \vee \cap U_{k l} \cap U_{p l}$ we get $z_{k j}=\frac{z_{k l}}{z_{p l}} z_{p j} \quad \forall i=0, . ., m$
Thus $\left[z_{k j}\right]_{j}=\left[z_{i j}\right]_{j} \mathrm{~m} \mathbb{P}^{m}$.
(3) $\zeta_{m, n}^{(k, l)}=\sigma_{m, n}^{(l, f)} \quad m \quad V \cap U_{k l} \cap U_{p q} \quad$ fo $k \neq p \& l \neq q$

We cluck both ordinates. Nite that $\underbrace{z_{\mathrm{kl}} z_{p q}}_{\neq 0}-z_{k q} z_{p l}=0 \mathrm{mV}$ frees $z_{k g,}, z_{p l} \neq 0 . m V \cap U_{k l} \cap U_{p g}$.
vt cord : $\left[z_{i l}\right]_{i} \stackrel{?}{=}\left[z_{i q}\right]_{i}$ in \mathbb{T}^{m}. Use $z_{i \ell} z_{p q}-z_{i q} z_{p l}=0$
To conclude that $z_{i l}=\frac{\sqrt{z_{p l}} \frac{z_{p q}}{\epsilon \mathbb{K}^{*}}}{} z_{i q} \quad \forall i=0, \ldots, m$, ie $\left[z_{i l}\right]_{i}=\left[z_{i f}\right]_{i} m \mathbb{P}^{m}$.
nd cord : $\left[z_{k j}\right] \stackrel{?}{=}\left[z_{p j}\right]$ in \mathbb{R}^{n}. Use $z_{k j} z_{i q}-z_{k g} z_{p . j .}=0$
to conclude that $z_{k j}=\frac{z_{k k_{q}}}{z_{p q}} z_{\mathbb{K}^{*}} \quad \forall j=0, \ldots, n$, il $\left[z_{k^{\prime} j}\right]_{j}=\left[z_{p j}\right]_{j}, m \mathbb{P}^{n}$.

- Claim 2: $\sigma_{m, n} \circ \sigma_{m, n}=i d_{p^{m}} \times \mathbb{T}^{n}$

3F/ We pase this on the set $U_{k} \times V_{l}$. Note $\sigma_{m, n}\left(U_{k} \times U_{l}\right) \subseteq U_{k, l}$

$$
\left.\tau_{m, n} \circ \sigma_{m, n}\right|_{U_{k} \times U_{l}}((x),[y])=\zeta_{m, n}^{(k, l)}\left(\left[x_{i} y_{j}\right]_{i, j}\right)=\left(\left[x_{i} y_{l}\right]_{i},\left[x_{k} y_{j}\right]_{j}\right)=\left(\left[\underline{x}_{i}\right],\left[y_{j}\right]\right)
$$

because ye, $x_{k} \neq 0$

- (lain 3: $\sigma_{m, n} \circ \tau_{m, n}=i d_{V} \quad\left(\Rightarrow\right.$ in $\left.\sigma_{m, n}=V\right)$

TF/ We pare this in the sit $V \cap U_{k, l} \cdot N$ sell $G_{m, n}^{(k, l)}\left(V \cap U_{k, l}\right) \subseteq U_{k} \times V_{l}$

$$
\left.\sigma_{m, n} \circ b_{m, n}\right|_{V \cap u_{k l}}([z])=\sigma_{m, n}\left(\left(\left[z_{i l}\right]_{i, l}\left[z_{k j}\right] \cdot\right)\right)=\left[z_{i l} z_{k j}\right]_{i, j}
$$

$O_{n} \vee \cap v_{k e}$ we have $z_{i l} z_{k j}=z_{i j} z_{k l} \quad$ or $i \neq k \& \ell \neq j$
If $j=l \quad z_{i l} z_{k j}=z_{i j} z_{k l} \quad \& \quad$ if $i=k \quad$ then $\quad z_{i \ell} z_{k j}=z_{i j} z_{k l}$

- Claim 4: V is ineducible

3f/ It's mough to show $V \cap U_{k l}$ is inedeccible $\forall k, l$. In tum $V \cap U_{k e} \xrightarrow[\sigma_{m, n}^{(k, e e}]{(H \omega s)} U_{k} \times U_{l} \simeq \mathbb{A}^{n} \times \mathbb{A}^{m} \Delta \zeta_{m, n}^{(k, l)}$ isan ismurphism of attime varieties. Simce $\mathbb{A}^{n} \times \mathbb{A}^{m}=\mathbb{A}^{n+m}$ is ineduccible, then so is $\mathrm{VOU}_{\mathrm{ke}}$.

Corollary 1: A parduct of projectire spaces is a projectios variety.
Q: Can we cover $\mathbb{T}^{m} \times \mathbb{R}^{n}$ with affine spaces?
A.: YEs! $\mathbb{P}^{m} \times \mathbb{R}^{n}=\bigcup_{i, j} v_{i} \times U_{j} \quad U_{i} \times U_{j} \cong \mathbb{A}^{m} \times A^{n}$

Nte $U_{i} \times U_{j}=\zeta_{m, n}\left(U_{i j} \cap V\right)=\sigma_{n, n}^{-1}\left(U_{i j}\right) \subseteq \mathbb{R}^{m} \times \mathbb{R}^{n}$
if $V_{i j}=(i, j)$-standord aftime patch on $\mathbb{T}^{m n+m+n}$ Thess, these sets are Zarishi ofyn m $\mathbb{P}^{m} \times \mathbb{R}^{n}$.
\&3 Product of projectise varicties:
Q: Can we say the same aberta prodect of projectire subvacicties?
A: YES! Use the Segre embedding
Proppoition 2: LAt $V \subseteq \mathbb{T}^{m}$ \& $W \subseteq \mathbb{P}^{n}$ be proogectire raictés with $V=V_{\text {prog }}$ (I)
 ileals. Then $V \times W$ is a projectire miety. Ferthermare:

$$
\begin{aligned}
& V \times W=V_{\text {proj }}\left(\left\langle f\left(G_{0}(z)\right): f \in I\right\rangle+c g\left(G_{1}(z)\right): g \in J\right\rangle+ \\
&\left.\left\langle z_{i j} z_{k l}-z_{i l} z_{k j}: i \neq k, j \neq \ell\right\rangle\right) \subseteq \mathbb{P}^{m n+m+n}
\end{aligned}
$$

Here: $\sigma_{n, n}=\left(\sigma_{0}, \sigma_{1}\right):$ im $\sigma_{m, n} \longrightarrow \mathbb{R}^{m} \times \mathbb{R}^{n}$

Beoof: Use $\zeta_{m, n}$ is a bijectim $\& V \times W \subseteq$ in $\sigma_{m, n} \Leftrightarrow \sigma_{0}(z) \in V \& \sigma_{1}(z) \in W$ \& $z \in$ in $\sigma_{m, n}$. This happens $\Leftrightarrow F\left(\sigma_{0}(z)\right)=0 \quad \forall F \in I$

$$
\left.\begin{array}{l}
\rho\left(\tau_{0}(z)\right)=0 \quad \forall \rho \in J \\
z \in V_{\text {proj }}\left(z_{i j} z_{k e}-z_{i l} z_{k j}\right. \\
\text { ifk } \\
j \neq e
\end{array}\right) .
$$

1. The Toplogy on VXW is Not the peoduct Toplogy of the Zaushi Topslogies on vxw.

Definitum: $H(\underline{x}, y) \in \mathbb{K}\left[x_{0}, \ldots x_{m}, y_{0}, \ldots y_{m}\right]$ is bihnoogenures of bideque
 (in the \underline{x} variables) of degree do \& $\mathbb{M}(x, y) \in \mathbb{K}\left[x_{0}, \ldots, x_{m}\right]\left[y_{0}, \ldots, y_{m}\right]$ is anomegencois (in the y variables) of leque d_{1}.

Examples (1) $F=x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}$ in $K\left[x_{0}, x_{1}, x_{2}, y_{0}, y_{1}, y_{2}\right]$ is bitonagemous of bidegue $(1,1)$
(2) $F=x_{0}^{2} y_{1}^{3}-2 x_{0} x_{1} y_{0} y_{2}^{2}$ in $\mathbb{K}\left[x_{0}, x_{1}, y_{0}, y_{1}, y_{2}\right]$ is bihomggemous of bideque $(2,3)$.
(3) $F=x_{0}^{2}+y_{0}^{3}$ is not bihomogeneures.

Corollary 2: Zarishiclosed sets $m \mathbb{R}^{m} \times \mathbb{T}^{n}$ are vanishing bre of bi honogenures prlypunials in $\mathbb{K}\left[x_{0}, \ldots, x_{n}, y_{0}, \ldots, y_{n}\right]$.
Pnoof: $Z \subseteq \mathbb{P}^{m} \times \mathbb{P}^{n}$ is closed $\Longleftrightarrow \sigma_{m, n}(Z) \subseteq \mathbb{P}^{m n+m+n}$ is closed $\underset{T h m l}{\rightleftarrows} \Leftrightarrow \sigma_{m, n}(Z) \cap U_{i j} \subseteq U_{i j} \simeq A^{m n+m+n} \quad$ is losed $\stackrel{T h m l}{\Leftrightarrow} \underset{1}{\leftrightarrows} Z \cap \sigma_{m, n}^{-1}\left(U_{i j}\right) \subseteq \sigma_{m, n}^{-1}\left(U_{i j}\right)=U_{i} \times U_{j} \simeq \mathbb{A}^{m} \times \mathbb{A}^{n} \simeq A^{m+n}$ $\sigma_{m, n}$ iscmt
is Zarislic closed.
Thes $\quad z \cap \sigma_{m, n}^{-1}\left(U_{i j}\right)=V(\langle S))$ fo $S \subseteq \mathbb{K}\left[\frac{x_{0}}{x_{i}}, \cdots, \frac{x_{m}}{x_{i}}, \frac{y_{0}}{y_{j}}, \cdots \frac{y_{n}}{y_{j}}\right] \forall_{i j}$ Homegeniegong each element of $\langle S\rangle$ with nesfect to the variables x_{i} \& y; reparately
enseres that $Z=V\left(\langle S\rangle^{n}\right)$ where $\langle S\rangle^{4} \subseteq \mathbb{K}\left[x_{0}, \ldots x_{m}, y_{0}, \ldots, y_{n}\right]$ is generated by a collection of bi-hanogemous pleymuials.
Lemma 2: In Coollary 2, we can pick all bihouggenous polymmials to hare the same bidegree.
Baoife: fet $z=V\left(f_{1}, \ldots, f_{r}\right)$ with bidigqu $\left(f_{i}\right)=\left(d_{i}, e_{i}\right)$
Set $\left.D=\max 3 d_{1}, \ldots, d_{r}\right\}, \quad E=\max \left\{e_{1}, \ldots, e_{r}\right\}$
Then, $\left.V\left(f_{i}\right)=V\left(3 x_{k}^{D-d_{i}} y_{l}^{E-e_{i}} f_{i}: \begin{array}{l}k=0, \ldots, m \\ l=0, \ldots, n\end{array}\right\}\right)$ fs all i
so $\left.z=V\left(3 g_{i, k, l}:=x_{k}^{D-d_{i}} y_{l}^{E-e_{i}} f_{i} \quad \begin{array}{l}k=0, \ldots m \\ l=0, \ldots ; n\end{array} i=0, \ldots, r\right\}\right)$ \&
bidugree $\delta_{i, k, l}=\left(D-d_{i}+d_{x} f_{i}, E-e_{i}+d y f_{i}\right)=(D, E) \quad \forall i, k, l$

Q2: How can we difine a ugular / natimal map $\mathbb{P}^{n} \times \mathbb{P}^{m} \longrightarrow \mathbb{P}^{N}$?
A2: We use the segre umbedding \& the standerd ofen coser on $\mathbb{P}^{m} \times \mathbb{P}^{n}$
Definition:

φ is ratimal / ugglar if, and mly if $\psi=\varphi_{0} \sigma_{m, n}^{-1}: V \longrightarrow \mathbb{P}^{N}$ is matival r rugular.
In tum, Ψ is ratival /upular if, and nly if the following 2 conditions hold:
(1) [natimal maps m affine patches of V]
$\Psi_{i j}=\Psi_{\mid V \cap U_{i j}}: V \cap U_{i j} \xrightarrow[U_{i j}]{U_{i j \simeq \mathbb{A}^{m+m+n}}} \mathbb{P}^{N}$ is natimal/agular fo all ij
$\left.\Leftrightarrow \psi_{i j}\right|_{\Psi^{-1}\left(U_{k}\right)}: V \cap U_{i j} \cap \Psi^{-1}\left(U_{k}\right) \longrightarrow U_{k}^{\prime} \simeq \mathbb{A}^{N}$ is natimal/rogular map $\forall k$
Note: $\left\{\Psi^{-1}\left(U_{k}\right) \cap V \cap U_{i j}\right\}_{k}$ is an orn corn of the affire maicty $V \cap U_{i j} \subseteq U_{i j}$
(2) [Agpement m orulaps] $\left.\Psi_{i j}\right|_{V \cap U_{i j} \cap U_{k} e}=\left.\psi_{k e}\right|_{V \cap U_{i j \cap U_{k l}}} \forall i, j, k, l$.

Q: Can we give a better characterization fo building such maps?
A: Yes, thanks To the fact that $V \cap U_{i j} \simeq U_{i} \times U_{j}$ is an affine space \& its coordinate sing is $\mathbb{K}\left[\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{m}}{x_{i}}, \frac{y_{0}}{y_{j}}, \cdots \frac{y_{n}}{y_{j}}\right]$

Pappritim 3: A map $\varphi: \mathbb{P}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{P}^{N}$ is rational if, and sly if φ conesfonds to a list of $N+1$ polynomials H_{0}, \ldots, H_{N} in $\mathbb{K}_{\left[x_{0}, \ldots x_{w}, y_{0}, \ldots y_{n}\right]}$ where all $H_{k}(x, y)$'s me bihonogeneres of the same bidegree

- The map φ is ugglar if, andmly if, $V\left(H_{0}, \ldots, H_{N}\right) \subseteq \mathbb{R}^{m} \times \mathbb{R}^{n}$ is empty.

Proof: By definition φ is animal $\Leftrightarrow \Psi: V \longrightarrow \mathbb{R}^{N}$ is national \Leftrightarrow Conditions (1) \& (2) in the pistons page hold

- First we cualyse condition (1). Using Propssitinl 520.1 , after clearing demminaties, each natimal map $\Psi_{i j}=V \cap U_{i j} \frac{\sim}{\left.\sigma_{m, n}\right|_{U_{i j}}} U_{i} \times U_{j}=\mathbb{A}_{\mathbb{K}}^{m} \times \mathbb{A}_{\mathbb{k}}^{n} \longrightarrow \mathbb{R}^{N}$
conespids to a collection of $N+1$ polymmials $p_{k}^{(i j)}\left(\frac{x_{0}}{x_{i}}, \ldots, \frac{\hat{x}_{i}}{x_{i}}, \cdots \frac{x_{m}}{x_{i}} ; \frac{y_{0}}{y_{j}}, \cdots \frac{y_{n}}{y_{j}}\right)$ for $k=0, \ldots, N$, not all equal 0 .
Homogeneliging with usfect to the miables x_{i} \& y_{j} separately gives a collection $p_{K}^{i j}=\left(p_{k}^{i j}\right)^{h} \in \mathbb{K}\left[x_{0}, \ldots, x_{m}, y_{0}, \ldots, y_{n}\right] \quad$ When e each $p_{k}^{i j} \equiv 0$ r it is bihonogeneses 1 bi-degree $\left(d_{k}^{i j}, e_{k}^{(j)}\right)$. Fo simplicity we say 0 is also bahonagenures of any ambition bi-degue.
- Condition (2) will say $\left[P_{k}^{i j}\right]_{k}=\left[P_{k}^{k i v}\right]_{k}$ in \mathbb{R}^{N} so we can define φ using $H_{k}:=P_{k}^{00} \quad \forall k$.
. For the tuple T_{0} give a ret-theretic map $\mathbb{P}^{m} \times \mathbb{P}^{n} \longrightarrow \mathbb{P}^{N}$ the entrees should hare the sam bidegree, ie $\forall \lambda, \mu \in \mathbb{K}^{*}$ we have:

$$
\left[H_{0}(\lambda \underline{x}, \mu \underline{y}): \ldots: H_{N}(\lambda \underline{x}, \mu y)\right]=\left[\lambda^{d_{0}} e^{e_{0}} H_{0}(\underline{x}, y): \ldots: \lambda^{d_{N} e_{N}} H_{N(x, y)}\right]
$$

This is hue if, and moly if $d_{0}=d_{1}=\cdots=d_{N}$ \& $e_{0}=\cdots=e_{N}$, as we wanted.

This will happen if, and moly if H_{0}, \ldots, H_{N} have no carmen solutives in $\mathbb{R}^{m} \times \mathbb{R}^{n}$.

