Lecture XXIV: Abstract Varieties 1
Last time: we discussed ponces $X X Y$ where both $X \& Y$ ane affine r projective velites Q: What happens if we mix? Can we turn $X \times Y$ into an aggebs-gemuctic object? say $X \subseteq \mathbb{A}^{m} \& Y \subseteq \mathbb{P}^{n}$. Then
(1) $X \times Y$ can be covered by a collection of a thine varieties

$$
Z_{i}=X \times\left(Y \cap U_{i}\right) \subseteq X \times \mathbb{A}^{n} \subseteq \mathbb{A}^{m} \times \mathbb{A}^{n} \quad i=0, \ldots ; n
$$

Note: $Z_{i}=X \times Y \cap\left(U_{0} \times U_{i}\right)$ so it should be viewed as an open of $X \times Y$.
$\left(U_{0} \times U_{i}\right.$ is an open of $\mathbb{R}^{m} \times \mathbb{R}^{n} \underset{\sigma_{m, n}}{\longrightarrow} \mathbb{R}^{m n+m+n}$ since $\left.U_{0} \times U_{i}=\sigma_{m, n}^{-1}\left(U_{0 i}\right)\right)$
(2) The of ens Z_{i}, z_{j} are related by a change of coordinates m thin oreclaps.

$$
\begin{aligned}
& z_{i j}=z_{i} \cap z_{j} \subseteq A^{m} \times U_{i j} \xrightarrow{\varphi_{i j}} \\
&\left(x,\left[\frac{y_{k}}{j i}\right]\right) \longmapsto A^{m} \times U_{j i} \geq z_{j} \cap z_{i}=z_{j i} \\
&\left(x,\left[\frac{y_{k j}}{j j}\right]\right)
\end{aligned}
$$

(3) $\Delta_{X X Y}=\{((x, y),(x, y)):(x, y) \in X X Y\} \subseteq(X X Y)^{2}$ is closed

$$
=\Delta_{\left.\mathbb{A}^{m} \times \mathbb{P}^{n} \cap\left(V_{\left(f_{i}\right.}(\underline{x}), f_{i}\left(\underline{x}^{\prime}\right), G_{i}(y), G_{j}\left(y^{\prime}\right)\right)_{\substack{i=1, \ldots r \\ j=1, \ldots ; s}}\right) .}
$$

if $X=V\left(f_{1}, \ldots, f_{r}\right) \quad Y=V_{\text {prop }}\left(G_{1}, \ldots, G_{s}\right)$
These 3 conditions will describe what an abstract Variety is. In tum (1) \& (2) will define purities.
1! The hansition functions will allow is To glue the z_{i}^{\prime} 's together \& abs gere e thin stuases of regular functions $O_{z_{i}}$. (Note: Need to extend our wotim of regular franctime m imeducible affine to any affine city)
Main examples :(1) $\mathbb{P}^{n}=\bigcup_{i=0}^{n} U_{i} ; U_{i j} \xrightarrow{Y_{i j}} U_{j i} \forall i \neq j ;$

- The Transition factions ane an 2 Thees, using the Transition functions from Example (1)
(i) $U_{i} \times U_{j} \xrightarrow[\left(\varphi_{i,} \varphi_{j l}\right)]{\left(i d, \varphi_{j l}\right)} U_{i} \times U_{l}$ fo $l \neq j$
(ii) $U_{i} \times U_{j} \xrightarrow{\left(\varphi_{i k, i d}\right.} U_{k} \times U_{l} \quad$ b $k \neq i$
(iii) $U_{i} \times U_{j} \xrightarrow{\left(\varphi_{i k}, \varphi_{j e}\right)} U_{k} \times U_{l}$ $\Leftrightarrow k \neq i, \quad l \neq j$
- $\Delta_{\mathbb{T}^{m} \times \mathbb{B}^{n}}=V_{p r o j}\left(x_{i} x_{k}^{\prime}-x_{k} x_{i}^{\prime}, y_{j} y_{l}^{\prime}-y_{\ell} y_{j}^{\prime} \underset{\substack{i \neq k \\ j \neq e}}{ }\right) \subseteq\left(\mathbb{R}^{m} \times \mathbb{R}^{n}\right)^{2}$ is coed
gl. Purrrieties:
Definition: A ningedspace is a pain $\left(X, O_{x}\right)$ where X is a Topological space $\&$ O_{X} is a sluaf of rings. All on shares will satisfy: $O_{x}(U) \subseteq 3 F: U \longrightarrow \mathbb{A}^{\prime}$ cutimusurs $\}$ Defimitim: A maxphism of rimped spaces is a $\operatorname{map}\left(X, O_{X}\right) \longrightarrow\left(Y, O_{Y}\right)$ consisting of
(1) a antinuores mat $F: X \longrightarrow Y$
(2) a map of sheaves $f^{\#}: O_{Y} \longrightarrow f_{*} \theta_{X}$ where $f_{*} O_{X}$ is the dinctimage sluaf, defined as $U \longmapsto F_{*} O_{x}(U)=O_{X}\left(F^{-1}(U)\right) \quad \forall U \subseteq Y$ open. More concretely, fo each $U \leq Y$ open we get a map $\Theta_{Y}(U) \xrightarrow{f_{U}^{\#}}\left(f_{*}\left(D_{X}\right)(U)\right.$ that is compatible with the restriction maps: given $V \subseteq U$ dens on Y we hare the commutative diagram.

Definitim:. A peraviety is a ringed space $\left(X, O_{x}\right)$ that has a firrite open corn

- Mrphisms of puravieties are simply morphisms as ringed spaces

Examples: Affine varieties a often subsets of affine varieties, with the shat of angular functions. The finite corer is the trivial one.
- We can build ne purvericties faun old mes via gluing. We first discuss the gluing of 2 prosanicties a later do the general case:

Construction 1: Gleing 2 presarieties.
Fix X_{1}, X_{2} to puranicties (ey zaffine racie Ties) \& two ofens $U_{1,2} \subseteq X_{1}$ $U_{2,1} \subseteq X_{2}$ with an is murphism $F: U_{1,2} \longrightarrow U_{2,1}$. We define the glaing $\& X_{1} \& X_{2}$ alugg f as $X_{:}=\left(X_{1} \cup X_{2}\right)$ with $a \sim a \quad \forall a \in X_{1} \cup X_{2}$ $a \sim f_{(a)} \quad \forall a \in U_{1,2}$
(\sim is an epuir. aln)
Bidrially:

- We have 2 natural embedding $i_{1}: X, \longrightarrow X \quad i_{2}: X_{2} \longrightarrow X$
- We undow X with the quotient topplopy $\left(U \subseteq X\right.$ is ofen $\Leftrightarrow i_{1}^{-1}(U) \leq X$, \& $\quad u n x_{2}=i_{2}^{-1}(u) \subseteq x_{2}$ are both ofen.
Ramark: This Topropy allow us to niew X_{1}, X_{2} as oten sabsests of X. If X_{1}, X_{2} are conered by affime rucieties, so is X.
- Shiaf O_{x} ? We obtain it by gluing the sluaves $\theta_{x_{1}} \& O_{x_{2}}$ alng f, as was done in Problem 20 HW4.
ugular functions m $U \Leftrightarrow$ restriction $T_{0} X_{1} \cap U$ hies in ${O_{X_{1}}}\left(X_{1} \cap U\right)$ \&

$$
x_{2} \cap \cup=O_{x_{2}}\left(x_{2} \cap U\right)
$$

For each $U \subseteq X$ oten, we define:

$$
\begin{aligned}
& \theta_{x}(u)=\left\{\varphi: U \rightarrow \mathbb{K}: \quad i_{1}^{*} \varphi=\varphi_{0 i}, \in \Pi_{x}\left(i_{1}^{-1}(u)\right) \&\right. \\
& \text { (oun notion from } \left.\text { a mprider fendion) } \quad i_{2}^{*} \varphi=\varphi_{0} i_{2} \in \Theta_{x}\left(i_{2}^{-1}(U)\right)\right\}
\end{aligned}
$$

Examples: : () $\mathbb{R}^{\prime}=U_{0} \cup U_{1}$
Tale $\mathbb{A}^{\prime} \geq \mathbb{K}^{*}, \mathbb{A}^{\prime} \geq \mathbb{K}^{*}$ fleed dong $U_{01}=\mathbb{K}^{*} \xrightarrow{\mathbb{}} \mathbb{K}^{*}=U_{1,0}$

$\boldsymbol{O}_{\mathbb{P}^{\prime}}=$ gluing of $\emptyset_{\mathbb{A}^{\prime}} \& \emptyset_{\mathbb{A}^{\prime}}$ alung

$$
\begin{aligned}
\varphi_{A^{\prime}} & \left(\mathbb{K}^{*}\right) \\
\left.\varphi_{(z)}\right) & 0 \\
\longrightarrow & \varphi_{\left(A^{\prime}\right.}\left(\frac{1}{z}\right) \text { ug }
\end{aligned}
$$

$M U \leq K^{*}: \frac{f(z)}{\delta(z)} \longrightarrow \frac{f\left(\frac{1}{z}\right)}{\delta\left(\frac{1}{z}\right)} \quad g$ nowhere aristhing $m U \& g\left(\frac{1}{z}\right)$ wowhere manishing $n f^{-1}(U)$. $L \Leftrightarrow g$ ravisuing at matom $\left\langle p_{1} \ldots p_{s}, \frac{1}{p_{1}}, \ldots, \frac{1}{p_{s}}\right\}$
Usins that $\mathbb{K}[x]$ is an UFD we gethats cannot ravish aryosphere on \mathbb{K}^{*}.
(2) What if we use $f=i d_{A^{\prime}}$?

We get an affine line with 2 zow prints.

Q1: Open nblds of 0 (top)?
A1: We have 2 offions: $\left\{\begin{array}{l}V_{1}=X,\left\{p_{1} \ldots \ldots p_{s}\right\} \\ \left.V_{2}=X, 3 p_{1} \ldots-p_{s}, 0^{\text {bot }}\right\}\end{array}\right.$

$$
\begin{aligned}
& i_{1}^{-1}\left(V_{1}\right)=\mathbb{A}^{\prime},\left\{p_{1} \ldots p_{s}\right\}=i_{2}^{-1}\left(V_{1}\right) \text { pen } n \mathbb{A}^{\prime} \\
& \left.\cdot i_{1}^{-1}\left(V_{2}\right)=\mathbb{A}^{\prime},\left\{p_{1} \ldots p_{s}\right\} ; i_{2}^{-1}\left(V_{2}\right)=\mathbb{A}^{\prime}, 3 p_{1}, \ldots p_{s}, 0\right\} \text { opn } m \mathbb{A}^{\prime}
\end{aligned}
$$

Q2: What ane $\theta_{x}\left(V_{1}\right)$ \& $\Theta_{x}\left(V_{2}\right)$?
A2: $ण_{x}\left(V_{1}\right)=ण_{x_{1}}\left(i_{1}^{-1}\left(V_{1}\right)\right) ; ण_{x}\left(V_{2}\right)=ण_{x_{1}}\left(i_{1}^{-1}\left(V_{2}\right)\right)$
Constuection 2: Gleing a collection of presarieties.
Fix $\left\{\left(X_{i}, 0_{x_{i}}\right)\right\}_{i \in I}$ pravarieties a subsets $U_{i j} \subseteq X$ fs $i \neq j$ with is morphisms $f_{i j}: U_{i j} \longrightarrow U_{j i}$ satisfying 2 compatibility conditins needed for the gluing:
(1) $f_{i j}^{-1}=f_{j i} \quad \forall i \neq j$
(2) [Cocycle conditim] Fn all i, j, k pairuise distinct

$$
f_{i j}^{-1}\left(U_{j i} \cap U_{j k}\right) \subseteq U_{i k} \& \quad f_{j k} \circ f_{i j}=f_{i k} m f_{i j}^{-1}\left(U_{j k} \cap U_{j i}\right)
$$

$\operatorname{Set} X:=\bigsqcup_{i} X_{i} / \sim \quad \begin{aligned} & a \sim f_{i j}(a) \forall a \in U_{i j} \subseteq X \\ & a \sim a \quad \forall a \in X_{i} \forall i\end{aligned}$
Note: N is uffexise by construction, symmetric by (1) \& hansitise by (2)
Pidorially:

- The shaf O_{x} is obtained by gleximg the shaves $\Theta_{x_{i}}$ alug the mafs $f_{i j}$ wing Problem $20 \mathrm{HW4}$. (The condition $v_{i i}=x_{i} \& f_{i i}=i \|_{v_{i i}} \forall i$ can be added by hand because we imposed a $\sim a \quad \forall a \in X_{i}$)

Propssitim 1: Pusmicties are Nethecian. In paticilar, they admut ineducible decompritions of doed sulsets into finitely many ineducibles.
Puosf: $x=z_{1} \cup \ldots \cup z_{r} \quad z$ i Natherian (afknu miety) $\Rightarrow x$ is Netherion

Suosf: If $U \leq X$ is open then $\left(U, \theta_{U}=\left.\theta_{x}\right|_{U}\right)$ is a imped space.

- $X=z_{1} \cup \cdots \cup z_{r}$ with z_{i} affime miefy, then $U=\left(z_{1} \cap U\right) \cdots\left(z_{r} \cap U\right)$
\& $\left(z_{i} \cap \cup\right)=x_{i}$ is an open of the affine mieity z_{i}.
- We can corre x_{i} as a firite unine of basic opens $X_{i}=\bigcup_{j=1}^{N i} D\left(f_{i j}\right)$.

By Parblem 1 HW4, $D\left(f_{i, j}\right)$ is an affrime miety (inded, $D\left(f_{1 j}\right) C_{d}$. A^{n+i} i $\left.z_{i} \leq A^{n}\right)$ so $\left(x_{i}, ण_{x_{i}}\right)$ is a premiety, corued by $\left(\Delta\left(f_{i j}\right), \emptyset_{D\left(f_{i j}\right)}\right)$
Cnclusin: X is corud by fimitely many atfine muities.
Ramark: We call $\left(U,\left.0_{x}\right|_{U}\right)$ an otru preveriety of $\left(x, \theta_{x}\right)$.
Q: What happens fo cored aits?
A: We get a purainity, but the sheaf is havder to constment!
Definition: Given $Y \leq X$ dxed at of a prevariety, we define a eluaf $1(Y$ as those fenctions that an liral astrictims of ry. Functiues $n X$ i ie:

Lemma 2: OY is a shaf \& $\left(Y, O_{Y}\right)$ is a purainety, called a clsed purmicty of X
3asof: The sheat axiom is easy to check becaure $ण_{r}$ is defined by a loal prosuty. For the puraniety claim if is enongeh to cluck that is erexy aftime apen $U \leq X$,
the ringed space (UnY, $\left.O_{Y}\right|_{U n Y}$) (riewed as an efen of Y) is ismorphic To the affime vaniety (UnY, $G_{\text {UnY }}$), riewed as an affime subraniety of the affime vaiity U. By Lemmal, the latter is a presaicity, so $\left(Y, O_{Y}\right)$ is a purariety. (seet|w6) ${ }_{0}$

Corollary 1: If X is a purmiety \& $Y \leq X$ is dred, then $Y c X$ is a morphison of puracieties.

Coodlay 2: Fixf: $X \longrightarrow Y$ morphism of puraieties a $Z \subseteq Y$ ren/elosed peraiely Then, $f^{-1}(Z) \subseteq X$ is an opem/cloed puraciaty of X

