Lecture XXVI: Compactness in Algebraic Gemetry §1. Compactness & Hausdorff condition <u>Definition</u>. A topological space X is <u>sequentially compact</u> if any spen cover 2 kitier of X admits a finite subcover. Remark: Any Noetberian Topological space is sequentially compact, so a fine varieties & abstract prevarieties au sequentially compact. Definition. A topological space X is <u>compact</u> if and only it pre any to topological space Y we have $Tz_2: X \times Y \longrightarrow Y$ is cloud (i.e., for each $(x, y) \longmapsto y$ ZEXXY closed, it 2(2) 5Y is closed). Here, we take the product Topology in XxY. . The following 2 results are standard statements in general Topology. Proprotine: X is Hausdorff () D_x ⊆ XxX is closed (wit the product Top) Lemma 1: If X is Hausdorff, then X is compact a X is sequentially compact The topology on XXY for X, Y presentities is NOT the product topology. More precisely, if X = X, U · - · UX, are open cornings of X & Y by altime mis, $Y = Y_1 \cup \cdots \cup Y_s$ the space X × Y is obtained by gluing the affine mieties X; XY; SA^{h;+m}J (XSAⁿi) endowed with the Zauishi Topology along the identity maps on the overlaps. . The topology on XXY is the quotient topology. This implies that the dection 3xixYi {: is an open covering of the space XXY by affine opens. In particular: Propritin Z: Fr X, Y privarieties we have : $Z \cap (X_i \times Y_j) \subseteq X_i \times Y_j \subseteq A^{n_i + m_j}$ ZEXXY is ofen/cloud (is Zarishi Mrs/cloud. ¥ 0,5 .

Remark: An alternative proof of Claim 2 can be given by untinning that $3 \times x^{2} j j$ is an spen set of $X \times Y$ (indeed, $(X \times Y_{j}) \cap (X_{i} \times Y_{k}) = X_{i} \times (Y_{j} \cap Y_{k})$ which is open in $X_{i} \times Y_{k}$ by unstanctin, precisely because $X \times Y$ is obtained by generg along the opens $(X_{i} \times Y_{j}) \cap (X_{k} \times Y_{k}) = (X_{i} \cap X_{k}) \times (Y_{j} \cap Y_{k})$ of both $X_{i} \times Y_{j} \in Y_{k} \times Y_{k}$.)

Example: Set
$$X = Y = /A_{1K}^{A}$$
 a consider the projection T_{2} : $A' \times /A' \longrightarrow A'$.
Assume that IK is infinite.
The set $Z = V(XY - A) \subseteq A' \times /A'$ is Earishi closed. However
 $T_{2}(Z) = 3 \quad y \neq 0 \quad \xi = D(y) \leq /A'$
 $\equiv A^{2}$ $A' > 0$

is open a not closed if IK is infinite

The issue here is that Z is not closed in the product topology is IK is infinite (laim: Given (x,y) $\notin Z$, there exists NO U $\in M'$, $V \leq M'$ Zarishi open with $x \in U$, $y \in V$ a $(U \times V) \cap Z = \emptyset$. Thus Z is not closed in the product topology of $A' \times M'$. 3F/ Indeed, by construction $U = A' \setminus J \times_1, ..., \times_S f$, $V = A' \setminus J \otimes_1, ..., \otimes_T f$ so $U \times V = A' \times A' \times (\bigcup_{i=1}^{S} (S \times_i f \times A^i)) \cup \bigcup_{j=1}^{S} (A' \times J \otimes_j f)$. Since IK is infinite, $\exists x \in A' \setminus J \times_1, ..., \times_S f$ with $\bot_{X \in A' \setminus \{X_1, ..., Y_S f\}}$. In particular, $(X_O, \frac{1}{X_O}) \in (U \times V) \cap Z$.

$$\frac{E_{xemple 2}: \quad \text{In cuttast}, \quad \text{take } X = \mathbb{P}_{|K}^{1}, \quad Y = \mathbb{A}_{|K}^{1} \quad \text{with } |K \text{ in humile}. \quad \text{Then} \\ Z = V(xy-1) \leq \mathbb{A}_{|X}^{1} \leq U_{0} \times \mathbb{A}_{|}^{1} \leq \mathbb{R}_{|X}^{1} \quad \text{is not clad}, \quad \text{but} \\ \overline{Z} = V(x_{0}y - x_{1}) \leq \mathbb{R}_{|X_{0}|}^{1} \times \mathbb{A}_{|}^{1} \quad \text{is closed} \quad \overline{Z} = Z \cup \{[1:0], 0\}\} \\ \mathfrak{e} \quad \overline{T}_{2}(\overline{Z}) = |\mathbb{A}_{|}^{1} \quad \text{is closed} \quad \mathbb{A}_{|}^{1} \qquad \frac{|\overline{Z}|}{|\mathbb{R}_{2}|} = \mathbb{A}_{|}^{1} \quad \text{is closed} \quad \mathbb{A}_{|}^{2} = \mathbb{R}_{|X|}^{2} \\ = \mathbb{R}_{|X|}^{1} \\ \end{array}$$

Our next goal is to answer the following function: A: 1x/hat's special about projective varieties compared to abbine ones? A: They are "compact" when TK = 1K.

Here is our main risult: Theorem 1 : Any projective variety over an algebraically closed field is complete. We prove the statement for R & Y=R" & deduce the result for any X from this, using Lemmaz. \$2 The case of Pm: Proposition 3: The projection Itz: Pr X TP K is closed if TK = 1K <u>Recall</u> (Crollany 2 \$ 23.3) Z = P^m × Rⁿ is closed (=) Z=V(F, -- F,) ≤ P × Pⁿ Lemma 3: We can pick all Fi, ... Fr to have the same bideque. $\frac{E_{xample,i}}{V(F_1)} = \frac{V(F_1 \times o, F_1 \times i)}{V(F_1)} + \frac{F_1 \times o}{F_1 \times i} = \frac{V(F_1 \times o, F_1 \times i)}{V(F_1)} + \frac{F_1 \times o}{F_1 \times i} + \frac{F_1 \times o}{F_1 \times$ <u>Broof</u>: Set Z = V(F1..., Fr) with bidique (fi) = [di, ei) Set $D = \max 3d_1, ..., dr \{, E = \max 3e_1, ..., er \}$ Then, $V(F_i) = V(3x_k^{D-d_i} y_l^{E-e_i} F_i : \frac{r_{=0, \dots, m_i}}{l_{=0, \dots, m_i}})$ for all i so $Z = V(3G := x_K y_l F_i k=0,..., n i=0,...,r_j) &$ biduque Gi, K, R = (D-diténegx Fi, E-eiténegy Fi) = (D, E) Hick, R Broof: Fix ZETPMXR closed. By Corollary 2 \$ 23.3 4 Lemma 3, we have $Z = V (\mathcal{F}_1, \dots, \mathcal{F}_r) \subseteq \mathbb{R}^n \times \mathbb{R}^n$ where f_1, \ldots, f_r au bihmogenious polynomials of the same bidigree (2, e). To show: $\Pi_2(Z)$ is closed in \mathbb{P}^n , or equivalently, \mathbb{P}^n , $\Pi_2(Z) \leq \mathbb{P}^n$ is open. Next, ve pix a $\in \mathbb{R}^m$ & determine polynomial conditions characterizing a $\notin T_2(Z)$. For each i=1,..., r we define Gi(x) = Fi(x, q) E K(xo, -xm] By construction, each G: (x) E K [xo -- xm] is homogeneous of degree &

Sime IK = IK, we can invoke the projective Nullstellensatz:

$$a \notin \overline{L}_{2}(2) \bigoplus \overline{A} \times \in \mathbb{P}^{n} \quad \text{with} \quad (x,a) \in \mathbb{Z} \bigoplus V_{proj}(G_{1}, \dots, G_{T}) \stackrel{=}{=} \emptyset$$

$$\bigoplus \sqrt{(G_{1}, \dots, G_{T})^{n}} \supseteq \overline{L}_{0} = \langle x_{1}, \dots, x_{N} \rangle$$

$$= \sqrt{(G_{1}, \dots, K_{T})^{n}} \bigotimes (\langle G_{1}, \dots, G_{T} \rangle) \stackrel{=}{=} 1$$

$$\bigoplus \sqrt{(G_{1}, \dots, K_{T})^{n}} \bigotimes (\langle G_{1}, \dots, G_{T} \rangle) \stackrel{=}{=} 1$$

$$\bigoplus \sqrt{(K_{T}(x_{0}, \dots, X_{M})^{n})^{n}} \bigotimes (\langle G_{1}, \dots, G_{T} \rangle) \stackrel{=}{=} 1$$

$$= \sqrt{(K_{T}(x_{0}, \dots, X_{M})^{n})^{n}} \bigotimes (\langle G_{1}, \dots, G_{T} \rangle) \stackrel{=}{=} 1$$

$$= \sqrt{(K_{T}(x_{0}, \dots, X_{M})^{n})^{n}} \bigotimes (\langle G_{1}, \dots, G_{T} \rangle) \stackrel{=}{=} 1$$

$$= \sqrt{(K_{T}(x_{0}, \dots, X_{M})^{n})^{n}} \bigotimes (\langle G_{1}, \dots, G_{T} \rangle) \qquad (\langle M^{14} \rangle paded \rangle piece d \rangle he havegeneses equivalent for $|K_{T}(x_{0}, \dots, X_{M})^{n}|_{N} = \langle G_{1}, \dots, G_{T} \rangle) (\langle M^{14} \rangle paded \rangle piece d \rangle he havegeneses equivalent for $|K_{T}(x_{0}, \dots, X_{M})^{n}|_{N} = \langle G_{1}, \dots, G_{T} \rangle) (\langle M^{14} \rangle paded \rangle piece d \rangle he havegeneses equivalent for $|K_{T}(x_{0}, \dots, X_{M})^{n}|_{N} = \langle G_{1}, \dots, G_{T} \rangle) (\langle M^{14} \rangle paded \rangle piece d \rangle he havegeneses equivalent for $|K_{T}(x_{0}, \dots, X_{M})^{n}|_{N} = \langle G_{1}, \dots, G_{T} \rangle) (\langle M^{14} \rangle paded \rangle piece d \rangle he havegeneses equivalent for $|K_{T}(x_{0}, \dots, X_{M})^{n}|_{N} = \langle G_{1}, \dots, G_{T} \rangle) = \langle G_{1}, \dots, G_{T} \rangle) (\langle M^{14} \rangle paded \rangle piece d \rangle he havegeneses equivalent for $|K_{T}(x_{0}, \dots, X_{M})^{n}|_{N} = \langle G_{1}, \dots, G_{T} \rangle) = \langle G_{1}, \dots, G_{T} \rangle) (\langle M^{14} \rangle paded \rangle piece d \rangle he havegeneses equivalent for $|K_{T}(x_{0}, \dots, X_{M})^{n}|_{N} = \langle G_{1}, \dots, G_{T} \rangle) = \langle G_{1}, \dots, G_{T} \rangle) (\langle M^{14} \rangle paded \rangle piece d \rangle he havegeneses equivalent for $|K_{T}(x_{0}, \dots, X_{M})^{n}|_{N} = \langle G_{1}, \dots, G_{T} \rangle) = \langle G_{1} \rangle$

$$= \langle G_{1}, \dots, G_{T} \rangle$$

$$= \langle G_{1} \rangle (\langle G_{1} \rangle) (\langle G_{1} \rangle) (\langle G_{2} \rangle) (\langle G_{2} \rangle) (\langle G_{1} \rangle) (\langle G_{2} \rangle) (\langle G_$$$$$$$$$$$

$$(h_1, \dots, h_r) \longmapsto h_i G_i + \dots + h_r G_r$$

Let's do sme dimension count: • dim $\left(\left(\mathbb{K}[X_0 \dots X_m]_{N-2}\right)^{\Gamma}\right) = \Gamma \dim \left(\mathbb{K}[X_0 \dots X_m]_{N-2}\right) = \Gamma \binom{N-d+m}{m}$ • dim $\left(\mathbb{K}[X_0, \dots X_m]_N\right) = \binom{N+m}{m}$

=> The map \oint is represented by a matrix Π with $\binom{N+m}{m}$ was $\& r\binom{N-J+m}{m}$ who since the map is surjective, \ddagger who >= # nows $\& r(\Bbbk(\Pi) = \binom{N+m}{m}$

• If we choose the standard maximal bases on $|K[X_0, -X_m]_{N-d} \notin |K[X_0, -X_m]_N$ the entries of $|\Pi|$ are homogeneous polynomials in a of degree (e) (they ome for a coefficients of $Gi(\underline{x}) = Fi(\underline{x}, \underline{q})$ a Fi had biseque (d, e)) • By construction $rk(\Pi) = \binom{N+m}{m} \leq \# colo \Pi$ is maximal a this condition is achieved if, and only if one of the maximal minors of A is not completing at \underline{q} . Such a minor is determined by a choice of columns (I_1, \dots, I_r) with $|I_1 \cup \dots \cup I_r| = \binom{N+m}{N}$. Each minor is a homogeneous polynomial in $\underline{q} \in \mathbb{P}^n$. Enclusion: $\underline{q} \notin T_2(\underline{z}) \iff \underline{q} \in \bigcup_{I=1}^{N-m} D(\min_{I}) \subseteq \mathbb{P}^n$

Corollary 1: Fix $\overline{K} = |K| \ge ht Y & any affine remity. Then, the projection map <math>\overline{\Gamma_2}: \overline{\mathbb{P}}^m \times Y \longrightarrow Y$ is closed.

 $\frac{g_{avof}}{R} + ssum Y \subseteq A^{n} \simeq \bigcup_{o} \subseteq \mathbb{R}^{n} \quad a \quad fix \ a \quad Zanishi \ closed \ set \ in \\ \mathbb{R}^{m} \times Y \quad We \ consider \ He \ closed \ of \ Z \ in \ He. \ projective \ vanisty \ \mathbb{R}^{n} \times \mathbb{R}^{n}. \\ By \ Proposition \ I \quad \mathbb{T}_{2}: \mathbb{R}^{m} \times \mathbb{R}^{n} \xrightarrow{} \mathbb{R}^{n} \quad is \ closed \ , \ so \ \mathbb{T}_{2}(\mathbb{Z}) \subseteq \mathbb{R}^{n} \\ is \ closed \ . \ Now : \ \mathcal{Z} = \ \mathcal{Z} \ \cap (\mathbb{R}^{m} \times Y) \quad so \\ \mathbb{T}_{2}(\mathbb{Z}) = \mathbb{T}_{2} \left(\mathbb{Z} \ \cap (\mathbb{R}^{m} \times Y) \right) = \underbrace{\mathbb{T}_{2}(\mathbb{Z}) \cap Y} \quad is \ closed \ in \ Y. \\ closed \ in \ \mathbb{T}^{n}. \end{aligned}$

<u>Example</u>: $A'_{\mathbb{R}}$ is not complete because $Z = V(xy-1) \subseteq A' \times A'$ is closed but $\pi_{Z}(V(xy-1)) = A' \cdot 30! = D(y)$ is not closed. $(\neq A' \in i)$ is not a finite set)

• Consider $Z \subseteq A' \times A' \subseteq \mathbb{R}' \times A' \quad \& \quad \overline{Z} \subseteq \mathbb{R}' \times \mathbb{R}'$, $\overline{Z} = V(x_0 y - x_1)$ Then $\overline{R}_2(\overline{Z}) = A'$ ($\overline{R}'(0) = [1:0] \& \overline{R}'(D_{(y)}) = \overline{Z}$.) Adding the points at infinity of Z closes the image - \$3 Proof of Main Theorem :

By Lemma 2, it is enough to check $T_2: X \times Y \longrightarrow Y$ is dived when Y is affine. Fix $X \le \mathbb{R}^m$ a projective variety & let $Y \le A^m$ be an affine variety. Fix $Z \le X \times Y \le \mathbb{R}^n \times Y$ a Zanishi closed set (laim 1: X × Y is closed in $\mathbb{R}^n \times Y$ by construction 3F/ Since $\mathbb{R}^n = U_0 \cup \cdots \cup U_n$ is an open couring with $U: x \land A^n$ is a Thum $1 \ge 19.1$ culticuts the Zanishi top on \mathbb{R}^n (= clouds sets are $V_{Pros}(S)$ (b) $S \le K(x_0, \cdots, x_n)$ set of homogeneous cleaks) append with the one making \mathbb{R}^n a preveniety, we have that $(\mathbb{R}^m \times Y) \setminus (X \times Y) = (\mathbb{R}^m \cdot X) \times Y \subseteq \mathbb{R}^m \times Y$ is Zanishi top because $\mathbb{R}^m \times X$ is Zanishi offen in \mathbb{R}^m . The later follows since the Zanishi topology on $\mathbb{R}^m \times Y$ is finer than the product topology induced by the Zanishi top m both $\mathbb{R}^m \times Y$. a

From Claim & Corollary 1, we conclude that $\overline{\mathbb{I}}_{2}(Z) \subseteq Y$ is closed.