Lecture XXXI: Dimension Theory I

TODAY : All our examples of topological spaces are either affine mieties or open subsets of affine varieties (=: a quasi-affine miety) our TK=K

31 Topplogical dimensin:

Examples: (1) dim (k)=0 for every field k (only maximul chain: 308 because prime ideals ou projer) (2) dim (R)=0 (=) there are no strict in clusions among prime ideales so all prime ideals are already maximal. More precisely, R is a Northerian ring, we have bem R=0 (R is Artinian. (this gives Ex 1) (3) dem (K[t]) = 1 because IK[t] is a PID (0=(F) is prime to (f) is maximal) ~ (this sime tx a) Remark: IF Risa PID & Risnota hield, then dem R=1. This applies to R = Z & K[t]. Main goal: Show dim # = n equir. dim TK[x1,...xn] = n \$2 Properties of limencim. Next, we show dimension works as expected with respect to lasic operations. Lemmal: If Y = X is a lopological subspace, then dim Y < dim X Proof: Fix a sequence of ineducibles in Y: Zo ZZ, Z. - ZZ. Then, taking dissures of Zi in X gives: 30 2 Zi 2 ... 2 Zr

 $\frac{(\operatorname{lain} 1: \overline{Z_i} \cap Y = \overline{Z_i} \quad \forall i \quad so \quad \forall h \quad \operatorname{inclusions } a_i \quad \operatorname{strict}}{(\operatorname{laim} 2: \overline{Z_i} \quad \operatorname{incl} =) \quad \overline{Z_i} \quad \operatorname{is } \operatorname{closed } a_i \quad \operatorname{inclusible}}$ $\frac{(\operatorname{nclucle}: \quad \operatorname{The } \operatorname{chain} \quad s_i \quad \operatorname{closures} \quad \operatorname{is } a \quad \operatorname{nlid} \quad \operatorname{chain} \quad f_{\overline{Z_i}} \quad \operatorname{in} \times , so \quad r \leq \operatorname{din} \times .$ $\operatorname{Taking } \sup \quad \operatorname{yins} \quad \operatorname{bin} \quad Y \leq \operatorname{bin} \times .$

Lemma 2: If X is a topological space & Y1,...,Yg
$$\subseteq X$$
 are closed, then
dein $\begin{pmatrix} y \\ i = 1 \end{pmatrix} = \max_{\substack{i \in i \leq S}} din(Y_i)$ (these gives
This applies if X is Northerran & Y1,...,Yg are the ineducible components of X.
Basch: Since Yi is closed in X we can replace X by Y:= $\bigcup_{i=1}^{S} Y_i$.
Yi $\subseteq Y$ subspace \implies dein(Y_i) \leq dein(Y) $\forall i$
lemma 1
• Given $Z_0 \neq Z_1 \neq \cdots \neq Z_r$ sequence of closed ineducibles in Y, then $\exists i$ with $Z_0 \subseteq Y_i$
These so $r \leq \max_{\substack{i \leq S}}$ dein(Y_i) \leq by taking sup we get dein Y $\leq \max_{\substack{i \leq S}}$

. Our meet ment means the empetation of dimensions of quari-athine meetres is that of affine meetres.
Lemma 3: Fix X = topological space & X=U, U...., UU_e with U(S X openVi. Then: dim (X) = max dim (U):
Substrie = fix X = topological space & X=U, U..., UU_e with U(S X openVi. Then: dim (X) = max dim (U):
Substrie = fix Zo = Z_1 = ... = Zr chain of closed inveducibles in X
Pret is such that Zr (U):
$$\neq \emptyset \implies Z_1(U): \neq \emptyset = V_1(Z) = 0$$
.
Then: Zo(U): $\neq Z_1(U): \neq Z$ is inveduceble, so $Z_1(U): = Z_2$
Then: Zo(U): $\neq Z_1(U): \neq Z$.
Thus is a chain of closed inveducibles of U (inveduceble substrated by Ulanin 1)
Thus dim U; $\geq r$, so max due(U) $\geq sup = dim(X)$
Lemma 4: Fix X topological space, $Y \subseteq X$ closed inveduceble $U \subseteq X$
open with U(Y $\neq \emptyset$. Then codim U (U)(Y) = codim $\chi(Y)$.
Supf: Exercise.
Lemma 5: Fix X Northerian topological space with inveduceble discupportion
 $X = X_1 \cup \cdots \cup X_n$. Assume Y = X is closed a inveduceble discupportion
 $X = X_1 \cup \cdots \cup X_n$. Assume Y = X is closed a inveduceble discupportion
 $X = X_1 \cup \cdots \cup X_n$. Assume Y = X is closed a inveduceble discupportion
 $X = X_1 \cup \cdots \cup X_n$. Assume Y = X is closed a inveduceble discupportion
 $X = X_1 \cup \cdots \cup X_n$. Assume Y = X is closed a inveduceble discupportion
 $X = X_1 \cup \cdots \cup X_n$. Assume Y = X is closed a inveduceble discupportion
 $X = X_1 \cup \cdots \cup X_n$. Assume Y = X is closed a inveduceble discupportion
 $X = X_1 \cup \cdots \cup X_n$. Assume Y = X is closed a inveduceble discupportion
 $X = X_1 \cup \cdots \cup X_n$. Assume Y = X is closed a inveduceble discupportion
 $X = X_1 \cup \cdots \cup X_n$. Assume Y = X is closed a inveduceble discupportion
 $X = X_1 \cup \cdots \cup X_n$. Assume Y = X is closed a inveduceble discupportion is X is closed a inveduceble discupportion $X = X_1 \cup \cdots \cup X_n$. Assume Y = X is closed a inveduceble discupport of X.
(5). Any chain of closed inveducebles in X_1 indiag at Y is a chain in X
So (>) is clear.
Remache: For Ex 3, 6 a 7 we meed To know him $A^2 = 2$. Unite this is assumed, we get the aneedlife from Lemmans Z a S.