Lectue XXXII: Dimensim Thury II
Recall: (1) X Eoplogical space

- $\left.\operatorname{dim}(x)=\sup _{r}\right\} z_{0} \nsupseteq z_{1} \nsupseteq \cdots \not \cdots z_{r}: z_{i} \subseteq X$ closed an ineducibles
- Fn $Y \subseteq X$ dsed \& ineduable: $\operatorname{wim}_{x}(Y)=\sup _{z}\left\{z_{0} \not z_{1} z_{1} \not z_{i} \ldots z_{r}=Y: z_{i} \subseteq X\right\}$,
(2) R cummutative ring $\quad \operatorname{dem} R=\sup 3 P_{0} \subseteq P_{1} \subseteq \cdots \subseteq B_{c}: B_{i} \subseteq R$ prine $\left.\forall i\right\}$

If $P \subseteq R$ prine $\quad \operatorname{codin} R_{R}=\sup 3 \gamma_{0} \subseteq P_{1} f \cdots \nsubseteq P_{r}=\gamma: \gamma_{i} \subseteq R$ prine $\left.\forall i\right\}$
Remark: If x affime vaicty $Y \leqslant x$ doed, ined
(1) $\sin X=\operatorname{din} \mathbb{K}[x]$
(2) $\operatorname{coshm}_{x} Y=\operatorname{waim} \operatorname{MK}_{[X]} I_{Y}(x)$

Lemma: $F\left(x X\right.$ Netherian Topplopical space $2 x=X, \cup \ldots \cup X_{s}$ indeucible decanp.

- $\operatorname{dim}(X)=\max _{1 \in i \leq s} \operatorname{dim}\left(X_{i}\right)$
- If $Y \subseteq x$ clsed ind $\operatorname{codim}_{y}(x)=\max _{1 \leq i \leq s}\left\{\operatorname{colim}_{x_{i}}(y): Y \leq x_{i}\right\}$

Lemma :. If $Y \subseteq X$ is a Copropical sadspace, then $\operatorname{dim} Y \leq \operatorname{dim} X$

- If $U \subseteq X$ ofen $8 \quad Y \subseteq x$ loed ined with UnY $=\phi \quad \operatorname{codin}_{x} Y=$ wdin $U n Y$.
s1 Finite morphisms and dimensin theory.
Fimite morphisms interact nicely with dimensim
Thorem 1: $F_{i x} X, Y$ affine mieties ore $\overline{\mathbb{K}}=\mathbb{K} \& \Psi: X \longrightarrow Y$ fimite sujective morphism. Then, $\operatorname{dim} X=\operatorname{dim} Y$.
Mouren, if $Z \subseteq X$ is dsed \& ineducible, whe hase wolin $x=$ whim $y P \cdot(z)$. Proof: We will use that finite morphisms ane doed (see Theorem $1 \leqslant 29.1$)
If $z_{0} \geqslant z_{1} \geqslant \cdots \ngtr z_{c}$ is a segerence of clsed ined sets in X, then

$$
\Psi\left(z_{0}\right) \geq \Psi\left(z_{1}\right) \geq \ldots \ldots \simeq\left(z_{r}\right)
$$

is a sequence of closed sets in Y.
Claim1: z_{i} ined, then $\overline{\Psi\left(z_{i}\right)}=\Psi\left(z_{i}\right)$ is ineducible
Claim 2: $z_{k} \subsetneq z_{l} \Rightarrow \Psi\left(z_{k}\right) \nsubseteq \psi\left(z_{l}\right)$ by Lamane 111$)$
Cnclusion: $\operatorname{dim} X \leqslant \operatorname{dim} Y$.

- Fo the othen inclusim: suppse we are gisen a sequence $W_{0} \nsupseteq w_{1} \supsetneq \ldots \not w_{s}$ of assed ined in Y. We want to keuld a chain

$$
T_{0} \geqslant T_{1} \ngtr T_{2} \supsetneq \cdots \geqslant T_{5} \quad m X
$$

where. T_{i} dised e ined $\forall i$

$$
\text { - } \Psi\left(T_{i}\right)=W_{i} \text { (so imcusmis ar prota) }
$$

We use Lamma 6 below to achiese this. Inded, by Lemma 1 (2) we can firme $T_{0} \leq X$ dsed a ineducible with $\psi\left(T_{0}\right)=W_{0}$. By Lammal. (3) $\exists T_{1} \subseteq T_{0}$ dsed $\&$ ineducible in X with $\Psi\left(T_{1}\right)=W_{1}$. Repeating this argument, we geta chain $\left.T_{0} \ngtr T_{1} \nsupseteq \cdots\right\rangle_{r} T_{c}$ with T_{i} clised e imeducible in $X \quad \forall i$.

Conclusin: $\operatorname{den} Y=\sup _{\text {r }} \leq \operatorname{dim} X$.

- The proof of the $2^{\text {nd }}$ assution is analogores, but now all our chains mest und at z r $\Psi(z)$, mppedisely. Fo this we use Lemma, (2) applaing $X \& y$ with \square z \& $\psi(z)$, usectínly ! Simee $\dot{\psi}$ is finite $\psi / 2$
Naxt, we write the statement of the techuical usuets in fimite maps that we need. The prool will follow ham awalogres results fs fimite rimg homureppisins Lemma 1: Fix $X \xrightarrow{\Psi} Y$ finite morphison of affine vaicties orec $\bar{K}=\mathbb{K}$. Then (1) If $z_{1} \subseteq z_{2}$ are ineducible dosed subsets of x, then $\Psi\left(z_{1}\right) \nsubseteq \Psi\left(z_{2}\right)$ an ineducuble clsed subsets of Y
(2) If Ψ is suyjectise, then giren any ineducible dosed subset W of Y, there exists $Z \subseteq x$ aned a imeducible with $\Psi(z)=w$
(3) If $Z_{1} \subseteq X$ is dsed simeducible a $W_{1} \supseteq W_{2}$ are ineducible, closed subsits of Y, with $W_{1}=\Psi\left(z_{1}\right)$, then there exists $Z_{2} \subseteq Z_{1}$ inedracible \& vored in X with $w_{2}=\Psi\left(z_{2}\right)$.

3f/ We may assume Ψ is dominant, by mplacing Y with $\overline{\Psi(x)}=\Psi(x)$ (recall fimite norphisms an closed) Write $\varphi=\Psi_{y}^{\#}: \Theta_{y}(y) \longrightarrow \Theta_{x}(x)$ Recall that $\varphi=\Psi_{Y}^{\#}: \mathbb{K}[Y] \subset \mathbb{K}[X]$ is injectire because Ψ is dominant.

Main: Write $z=V_{x}(q)$ fo $q \subseteq \mathbb{K}[x]$ prime ideal Then

$$
\begin{aligned}
& \left.\Psi\left(z_{j}\right)\right)_{\psi_{\text {closed }}}^{\bar{\psi})} \overline{\psi(z)}=V\left(\varphi^{-1}(q)\right) \\
&
\end{aligned}
$$

(1) We set $z_{1}=V\left(q_{1}\right) \quad z_{2}=V\left(q_{2}\right)$ with $q_{1}, q_{2} \leq \mathbb{K}[x]$ prime, $q_{1} \subset q_{2}$ by the Nullstcllensatz.
Lemma 2 (1) below says $q_{1} c_{q} q_{2}$ prime $\Rightarrow \gamma_{1}:=\varphi^{-1}\left(q_{1}\right) \not \varphi^{-1}\left(q_{2}\right)=: p_{2}$ are duro prime.
So by the Nullstellensetz a the claim we have:

$$
\Psi\left(z_{1}\right):=V\left(\varphi^{-1}\left(q_{1}\right)\right) \ngtr V\left(\varphi^{-1}\left(q_{2}\right)\right)=: \Psi\left(z_{2}\right)
$$

(2) This follows tron Lemma $2(2)$ below. Set $W=V(p) \quad p \in \mathbb{R}[y]$ a tale $z=V\left(q \cdot \mathbb{K}_{[x]}\right)$ where $\varphi^{-1}(q)=\varnothing$
(3) This follows fum Lammas 2 (3) below. Set $W_{1}=V\left(P_{1}\right), W_{2}=V\left(P_{2}\right)$ with $\gamma_{1} \subseteq \gamma_{2}$ prime. \& set $q_{1} \subseteq \mathbb{K}[x]$ prime with $\varphi^{-1}\left(q_{1}\right)=\gamma_{1}$. Then pick $q_{2} \supseteq q_{1}$ prime in $\mathbb{K}[x]$ with $\varphi^{-1}\left(q_{2}\right)=p_{2}$
The analogous result is finite maphisms of rings is:

Lemma 2 : Fix $\varphi: A \longrightarrow B$ finite maphism of ming. Then:
(0) $F i x q \subseteq B$ prime ideal 2 set $P:=\varphi^{-1}(q)$. Then: $q \subseteq B$ is mel $\Leftrightarrow P \subseteq A$ is male.
(1) [Incomparability] If $q_{1} f q_{2}$ are pierre ideals of B, then $\varphi^{-1}\left(q_{1}\right) \not \subset \varphi^{-1}\left(q_{2}\right)$
(2) $[$ lying 0 rec $]$ If φ is injectire, then $\forall 3 \subseteq A$ prime deal, we can find $q \subseteq B$ prime with $\varphi^{-1}(q)=p$.
(3) $\left[\right.$ going - $\left.u_{p}\right]$ given $P_{1} \subseteq P_{2}$ pure idols on A \& a pin $q_{1} \subseteq B$ with $\varphi^{-1}\left(q_{1}\right)=P_{1} \quad \exists$ lame ideal $q_{2} \subseteq B$ with $q_{1} \subseteq q_{2} \& \varphi^{-1}\left(q_{2}\right)=\gamma_{2}$.

Pictorially:

$$
\begin{array}{ll}
q_{1} \subseteq q_{2} & \text { m } B \\
1 & \varphi^{-1}\left(q_{1}\right)=J_{1} \subseteq \frac{J_{2}}{}=\varphi^{-1}\left(q_{2}\right) \\
\text { in } A
\end{array}
$$

Proof: (0) By construction we hare an induced map $\bar{\varphi}: A / 8 \longrightarrow \frac{B}{q}$
Feuthennore, $\bar{\varphi}$ is a prate a injectise map $\left(\beta=\varphi^{-1}(q)\right)$ between domains.
CRim: $A^{\prime}=A / P$ is a field $\Longleftrightarrow B^{\prime}=B / q$ is a field.
BF/ \Leftrightarrow Fix $u \in A^{\prime} \backslash\{0\}$ \& let $b=\frac{1}{\varphi(a)} \in B^{\prime}$. Since $B^{\prime} \mid A^{\prime}$ is interpol $\exists n \in \mathbb{N}$ \& $a_{1}, \ldots, a_{n} \in A^{\prime}$ with $b^{n}+\varphi\left(a_{1}\right) b^{n-1}+\ldots+\varphi\left(a_{n}\right)=0 \quad$ in B^{\prime} then $\left(\frac{1}{\varphi(u)}\right)^{n}+\varphi\left(a_{1}\right)\left(\frac{1}{\varphi(a)}\right)^{n-1}+\cdots+\varphi\left(a_{n}\right)=0 \quad$ gilds

$$
\begin{array}{r}
\frac{1}{\varphi(u)}+\varphi\left(a_{1}\right)+\varphi_{\left(a_{2}\right)} \varphi_{(u)}+\cdots+\varphi\left(a_{n}\right) \varphi(u)^{n-1}=0 \\
\text { ie } \frac{1}{\varphi(u)}=-\varphi\left(a_{1}+a_{2} u+\cdots+a_{n} u^{n-1}\right) \in \varphi(A)
\end{array}
$$

Then $\frac{1}{u}=a_{1}+a_{2} u+\cdots+a_{n} u^{n-1}$ in A by the injectivity of φ.
\Leftrightarrow Assume A^{\prime} is a field $\&$ pick $b \in B^{\prime},\{0\}$. Since $B^{\prime} \mid A^{\prime}$ is integral, then $\neq \mathcal{F}_{\text {(minimal) }} \in a_{1} \ldots a_{n} \in A^{\prime}$ with $b^{n}+\varphi\left(a_{1}\right) b^{n-1}+\cdots+\varphi\left(a_{n}\right)=0$ in B^{\prime}
By minimality \& $b \neq 0$ we hare $\varphi\left(a_{n}\right) \neq 0$ ie $a_{n} \neq 0$.
Th write $0=b^{n}+\varphi\left(a_{1}\right) b^{n-1}+\cdots+\varphi\left(a_{n}\right)=b\left(b^{n-1}+\varphi\left(a_{1}\right) b^{n-2}+\cdots+\varphi_{\left(a_{1}\right)}\right)+\varphi_{\left(a_{n}\right)}$
equimantly: $\quad 1=b(\underbrace{\left.-\varphi\left(\frac{1}{a_{n}}\right)\left(b^{n-1}+\varphi\left(a_{1}\right) b^{n-2}+\cdots+\varphi\left(a_{n}\right)\right) \text { in } B, ~\right) ~=~}$
These, $b \in B$ is insurable.
(1) Note: $\} \underline{q} \subseteq B$ prime with $\varphi^{-1}\left((\underline{q}) \subseteq P \mathcal{L}_{\rightleftarrows}^{1-t_{0-1}}\left\{\tilde{q} \in B_{\beta}=A_{\rho} B\right.\right.$ prime with
(Localingatim is exact)

- Since φ is pinite the induced amorphism $\varphi_{B}: A_{P} \longrightarrow B_{\beta}$ in finite \& so is $\overline{\varphi_{8}}: A_{\rho / \rho A_{\rho}} \longrightarrow \frac{B_{8}}{P B_{\rho}}=B \otimes_{A} A \rho / P A_{\rho}$
given $q_{1} \& q_{2}$ as in (1), assume $\varphi^{-1}\left(q_{1}\right)=P=\varphi^{-1}\left(q_{2}\right)$ By (0) we lase that $q_{1}{ }^{0} p / 8 b_{p}$ \& $q_{2} B_{p} / 8 B_{p}$ are maximal ideals of $B_{p} / \rho B_{p}$

Howher $q_{1} \frac{B_{p}}{\rho p_{p}} \subset q_{2} \frac{3}{\beta} / B_{\rho}$ by Note abre, so this camnot happen!
(2) By construction, we know B^{1} is a fy A-mudule, so B_{ρ} is a fg $A_{\bar{\rho}}$ mod $0 \neq A_{\rho} \longrightarrow A_{\rho} B=: B_{\rho}$ so $B_{\rho} \neq 0$.

By Nakayama's Lemma (Lecture $\S 29.1$) $\quad B_{\rho} \neq \varnothing B_{\rho}$
Now $B_{\rho} / \nabla B_{\rho} \neq 0$ so it contains, a prime ideal $\tilde{q} \in B_{\rho} / \beta_{\rho}$.
By the wote: $\tilde{q}=q B J / Q B_{\beta}$ fos sme $q \subseteq B$ prime deral with $\varphi^{-1}(q)=p$.
(3) $F_{1 x} \theta_{1}, P_{2}, q_{1}$ as in the staterment \& considen the induced morphison of rings $\bar{\varphi}: A / \beta_{1} \longrightarrow B / q_{1}$

- Since $\varphi\left(q_{1}\right)=\gamma_{1}, \bar{\varphi}$ is imectise
. $\bar{\varphi}$ is fimite because φ is fimite
Applying (2) $\exists \bar{q}_{2} \leq B / q_{1}$ prime with $\bar{\varphi}\left(\tilde{q}_{2}\right)=P_{2} / B_{1}$
By constmetim $\tilde{q}_{2}=q_{2} / q_{1}$ with q_{2} prime in $B \& \varphi^{-1}\left(q_{2}\right)=p_{2}$.
\$2 Propecties of Koull dimension:
1! Notherianness of a ning and fimite dimension are not related, although it's hard to fand examples where mly me of these proputies hails.
Example 1 (Nagata) $\quad A=\mathbb{K}_{\left[x_{n}: n \in \mathbb{N}\right]}$ \& Tale an incuasing requence m_{1}, m_{2}, \cdots with $m_{i+1}-m_{i}>m_{i}-m_{i-1} . \forall i \quad$ set $m_{0}=0$.
Tale $\nabla_{i}=\left(x_{m_{i}+1}, \ldots, x_{m_{i+1}}\right)$ \& nt $S=A, \bigcup_{i=0}^{\infty} \nabla_{i}$
(i) S is multiplicatierly dored
(2) $R=S^{-1} A$ is Nertherian
(3) $S^{-1} P_{i} \subseteq R$ has colimension $m_{i+1}-m_{i} \xrightarrow[i \rightarrow \infty]{\longrightarrow}$

Condede: R is N retherian \& $\operatorname{dim} R=\infty$
Examplez $R=\mathbb{K}\left[x_{n}: n \in \mathbb{N}\right] /\left(x_{n}^{2}: n \in \mathbb{N}\right)$ is not Nretherian, but $\operatorname{dem} R=0$

Lemma 3: Fo ency $P \subseteq R$ prime we have:
(1) $\operatorname{colim}_{R} P=\operatorname{dim} R_{\beta}$
(2) $\operatorname{dim} R / p+\operatorname{codim} P \leq \operatorname{dim} R$

Pot: (1) $\tilde{q} \subseteq B_{3} \longleftrightarrow q=\tilde{q} \cap R \subseteq R$ prime ideal containing P
(2) Any pain of chains $\gamma_{0} \subsetneq \ldots \subsetneq \gamma_{1}=P$ of primes in P

$$
30\}=q_{0} \subseteq \cdots \subseteq q_{s}
$$

${ }_{R / \beta}^{t}$ domain
produce a chain $P_{0} \subsetneq \cdots c_{\mp} P_{r}=\beta=\pi^{-1}\left(q_{0}\right) \subsetneq \pi^{-1}\left(q_{1}\right) \subsetneq \cdots \subseteq \pi^{-1}\left(q_{s}\right)$
of prime ideals of R of length $r+1+s=c+s+1$ when $\pi: R \longrightarrow R / \beta$
Taking sup gives $\operatorname{cosem}_{4,5} P+\operatorname{dim} R / 8 \leq \operatorname{dim} R$.

$$
\sup _{c}{ }^{R} \sup _{s}^{\prime \prime}
$$

Cocollany1: Given X affine variety a $Y \subseteq X$ inducible affine variety, we was $\operatorname{dim} X \geqslant \operatorname{sim} Y+\operatorname{codim}_{X} Y$.

Remarks: (1) The equality need not hold in examples
 $\operatorname{den} X=2$ $\sin y=1$ $\operatorname{cosin} x=0$
(2) Howere, if $R=\mathbb{K}[x]$ has the profuty that every maximal chain of prime ideals hes the same dimension, then we would have $=$ in the Grollany. This is pucisely what happens fo $X=A^{n}$!

