Lecture XX X 11: Dimension Theory II

11)

$$\underline{(\text{laim 2}: Z_k \not\in Z_{\ell} \implies \Psi(Z_k) \not\in \Psi(Z_{\ell}) \quad \text{by Lemma}}$$

Conclusion : dim X & Sim Y.

. For the other inclusion : suppose we are given a sequence $W_0 \supseteq W_1 \supseteq \dots \supseteq W_S f$ closed inclusion Y. We want to build a chain

To
$$\neq T_1 \neq T_2 \neq \cdots \neq T_s$$
 m X
where T_i chird e_i include H_i
 $\Psi(T_i) = W_i$ (so inclusions are people)

We use Lemma 6 below to achieve this. Indeed, by Lemma 1.(2) we can find To $\leq X$ closed a ineducible with $\Psi(T_0) = W_0$. By Lemma 1.(3) $\exists T_1 \subseteq T_0$ closed a ineducible in X with $\Psi(T_1) = W_1$. Repeating this argument, we get a chain

To ZT, Z....ZTc with T; cloud & inclucible in X VZ.

<u>Conclusion</u>: denn Y = sup < dim X.

The proof of the 2nd assertion is analogous, but now all our chains must and at 2 or $\Psi(2)$, respectively. For this we use Lemma 1 (2) explaining X e Y with D 2 e $\Psi(2)$, respectively. Since $\Psi(2)$ kinite $\Psi(2)$ Next, we write the statement of the technical results in finite maps that we need. The proof will follow from analogous results for finite ring homeworphisms Lemma 1: Fix X $\xrightarrow{\Psi}$ finite worphism of affine resieties over $K_{-1}K_{-1}$ Then (1) If $Z_{-1} \subseteq Z_{-2}$ are ineducible cloud subsets of X, then $\Psi(2_{-1}) \subsetneq \Psi(2_{-2})$ an ineducible cloud subsets of Y

(2) If Ψ is surjective, then given very inclucible closed subset W of Y, there exists $Z \subseteq X$ closed a inclucible with $\Psi(Z) = W$

(3) If $Z_1 \subseteq X$ is closed a ineducible $A = W_1 \supseteq W_2$ are ineducible, closed subsciber of Y_1 , with $W_1 = \Psi(Z_1)$, then there exists $Z_2 \subseteq Z_1$ ineducible 8 closed in X with $W_2 = \Psi(Z_2)$.

3F/ We may assume Ψ is dominant, by nplacing Υ with $\Psi(X) = \Psi(X)$ (recall finite morphisms are closed) Waite $\Psi = \Psi_Y^{\text{#}} : \begin{array}{l} \mathcal{O}_X(X) \\ \mathcal{O}_X(X) \end{array}$ Recall that $\Psi = \Psi_Y^{\text{#}} : [K[Y] \longrightarrow [K[X]]$ is injective because Ψ is dominant.

(laim: Write
$$z = V_x(q)$$
 for $q \leq K[x]$ prime ideal Then
 $\Psi(z_i) = \Psi(z_i) = V(\varphi^{-1}(q_i))$
 Ψ closed

(1) We set $Z_1 = V(Q_1)$ $Z_2 = V(Q_2)$ with $Q_1, Q_2 = |K[X]|$ prime, Q_1, Q_2 by the Nullstellensatz. Lemma Z(1) below says $Q_1 \in Q_2$ prime $\Rightarrow \mathcal{D}_{1:2} \mathcal{P}^{-1}(Q_1) \notin \mathcal{P}^{-1}(Q_2) =: \mathcal{D}_2$ are also prime. So by the Nullstellensatz a the claim we have : $Y(Z_1) := V(\mathcal{P}^{-1}(Q_1)) \nexists V(\mathcal{P}^{-1}(Q_2)) =: \mathcal{P}(Z_2)$ (2) This follows from Lemma Z(2) below. Set $W = V(\mathcal{D})$ $\mathcal{P} \in K(Y)$ a take $Z = V(Q_1 |K[X])$ where $\mathcal{P}^{-1}(Q) \doteq \mathcal{D}$ (3) This follows from Lemma Z(3) below Set $W_1 = V(\mathcal{D}_1), W_2 = V(\mathcal{D}_2)$ with $\mathcal{D}_1 \leq \mathcal{D}_2$ prime a set $Q_1 \subseteq K[X]$ prime with $\mathcal{P}^{-1}(Q_1) = \mathcal{D}_1$. Then pick $Q_2 \supseteq Q_1$ prime in K[X] with $\mathcal{P}^{-1}(Q_2) = \mathcal{D}_2$.

۵

Lemma 2: Fix
$$4:A \longrightarrow B$$
 finite maphism of migs. Then:
(0) Fix $q \in B$ prime ideal a set $\mathcal{B}:= P^{-1}(q)$. Then: $q \in B$ is mall $\in \mathcal{B} \subseteq A$ is mall.
(1) [In comparability] IF $q_1 \lneq q_2$ are prime ideals of B, then $P^{-1}(q_1) \lneq P^{-1}(q_2)$
(2) [lying Over] IF P is injective, then $\forall 3 \subseteq A$ prime edual, we can find $q \in B$
prime with $P^{-1}(q) = P$.

L3) [$q_{2}eng_{-}Up$] $q_{1}en \vartheta_{1} \subseteq \vartheta_{2}$ parme iduals on A & a prime $q_{1} \subseteq \vartheta$ with $\Psi^{-'}(q_{1}) = \vartheta_{1}$] nume idual $q_{2} \subseteq \vartheta$ with $q_{1} \subseteq q_{2} \notin \Psi^{-'}(q_{2}) = \vartheta_{2}$. Bictorially: $\Psi^{'}(q_{1}) = \frac{1}{3} \subseteq \frac{1}{3} \subseteq \frac{1}{3} = \Psi^{-'}(q_{2})$ in A

¹/₂esh: (*) By construction we have an induced map
$$\overline{\Psi}$$
: Ay $\overline{}_{A}$ $\overline{}_{A}$
Furthermore, $\overline{\Psi}$ is a field $\underline{}_{A}$ injective map $|B:\Psi_{(q)}|$ between denotes.
(laim: A: Ay is a field $\underline{}_{A}$) $\underline{}_{A}$ $\underline{}_{A}$ field $\underline{}_{A}$
 $\underline{}_{A}$ $\underline{}_{$

(2) By instruction, we know B is a fig A-module, so Bp is a fig Ap mod

$$0 \neq A_{p} \longrightarrow AgB =: B_{p}$$
 So $B_{g} \neq 0$.
By Nakayama's Lemma (Lecture \$29.1) $B_{g} \neq \partial B_{p}$
Now $Bg/_{\partial B_{p}} \neq 0$ so it intains a prime ideal $\tilde{q} \in B_{p}/_{\partial B_{p}}$.
By the note : $\tilde{q} = q Bg/_{\partial B_{p}}$ for some $q \subseteq B$ prime ideal with $p^{-1}(q) = B$.

(3) Fix
$$\theta_1, \overline{P_2}, \overline{q_1}$$
 as in the statement & consider the induced
morphism of rings $\overline{\Psi}: \overline{A/B_1} \longrightarrow \overline{B/q_1}$.
Since $\Psi(\overline{q_1}) = \vartheta_1$, $\overline{\Psi}$ is injective
 $\overline{\Psi}$ is finite because Ψ is finite
Applying (2) $\exists \overline{q_2} = \theta/q_1$ prime with $\overline{\Psi}(\overline{q_2}) = \overline{B/g_1}$
By instruction $\overline{q_2} = \overline{q_2/q_1}$ with q_2 prime in B & $\Psi(\overline{q_2}) = \vartheta_2$. \Box

Northerianness of a ring and finite dimension are not related, although
it's heard to find examples where may are of these projectives bails.
Example 1 (Nagata)
$$A = K[x_n : news] \in Take an increasing sequence m_1, m_2, \cdots
with $m_{i+1} - m_i > m_i - m_{i-1}$. It set $m_0 = 0$.
Take $\mathcal{D}_i = (x_{m_i+1}, \cdots, x_{m_{i+1}}) \in set S = A \setminus \bigcup_{c=0}^{\infty} \mathcal{D}_i$
(1) S is multiplicatively closed
(2) $R = S^{-1}A$ is Northerian
(3) $S^{-1}\mathcal{P}_i \subseteq R$ has codimension $m_{i+1} - m_i \xrightarrow{i \to \infty} \infty$
(melude: R is Northerian e dein $R = \infty$
Example 2 $R = [K[x_n : n \in N]]/(x_n^2 : n \in N)$ is not Northerian, but den $R=0$$$

Lemma 3: For energ $\mathcal{P} \subseteq \mathbb{R}$ prime we have: (1) water $\mathcal{P} = \dim \mathbb{R}_{\mathcal{B}}$ (2) $\dim \mathbb{R}/\mathcal{P} + \operatorname{codem} \mathcal{P} \leq \dim \mathbb{R}$ <u>3noof</u>: (1) $\widetilde{\mathcal{A}} \subseteq \overline{\mathcal{R}}_{\mathcal{B}} \longrightarrow \widetilde{\mathcal{A}} = \widetilde{\mathcal{A}} \cap \mathbb{R} \subseteq \mathbb{R}$ prime ideal untaining \mathcal{B} (2) Amy pair of chains $\mathcal{B}_{0} \subseteq \cdots \subseteq \mathcal{B}_{\ell} = \mathcal{B}$ of primes in \mathcal{B} $3o_{\ell} = \mathcal{Q}_{0} \subseteq \cdots \subseteq \mathcal{Q}_{s}$ $\longrightarrow \mathbb{R}/\mathcal{P}$ *hypermain produce* a chain $\mathcal{B}_{0} \subseteq \cdots \subseteq \mathcal{B}_{\ell} = \mathcal{B} = \pi^{-1}(\mathcal{Q}_{0}) \subseteq \pi^{-1}(\mathcal{Q}_{1}) \subseteq \cdots \subseteq \pi^{-1}(\mathcal{Q}_{s})$

product a chain
$$V_0 \neq \cdots \neq V_r = 0 = k (q_0) \neq k (q_1) \neq \cdots \leq k (q_s)$$

of prime ideals of R of lungth $r+1+s = (+s+1)$ when $R: R \longrightarrow R/g$
Taking sup gives when $R + \dim R/g \leq \dim R$.

[orollany]: Given X attime reviety a $Y \subseteq X$ ineducible attime raviety, we have dem $X \ge \dim Y + \operatorname{codim}_X Y$.

Remarks: (1) The equality need not hold in examples X = 4 dim Y = 1which Y = 0(2) However, if R = K[x] has the property that every maximal chain of Prime ideals has the same dimension, then we would have = in the Goodlary. This is precisely what happens for $X = A^{1}$.