Lecture XXXIII: Dimension Thury III
GOAL: Show $\operatorname{dim} \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]=n$ fr any held \mathbb{K} We will need 2 lemmas fum Lecture 32.

Lemma 1: Fix $\varphi: A \longrightarrow B$ finite maphism of ming. Then:
(1) [Incomparability] If $q_{1} f q_{2}$ are pine ideals of B, then $\varphi^{-1}\left(q_{1}\right) \not \subset \varphi^{-1}\left(q_{2}\right)$
(2) $\left[\right.$ lying $\left.O_{\text {res }}\right]$ If φ is injectire, then $\forall P \subseteq A$ prim ideal, we can find $q \subseteq B$ prime with $\quad \varphi^{-1}(q)=p$.
(3) $[$ going -Up $]$ given $P_{1} \subseteq P_{2}$ pane ideals on A \& a prim i $q_{1} \subseteq B$ with $\varphi^{-1}\left(q_{1}\right)=P_{1} \quad \exists$ lame ideal $q_{2} \subseteq B$ with $q_{1} \subseteq q_{2} \& \varphi^{-1}\left(q_{2}\right)=P_{2}$.

Pidtrially:

$$
\begin{array}{ll}
q_{1} \subseteq q_{2} & \text { m } B \\
1 & \varphi^{-1}\left(q_{1}\right)=\beta_{1} \subseteq \frac{1}{J_{2}}=\varphi^{-1}\left(q_{2}\right) \\
\text { in } A
\end{array}
$$

Lemma 2: Fo ency $P \subseteq R$ prime we have:
(1) $\operatorname{codim}_{R} P=\operatorname{dim} R_{\beta}$
(2) $\operatorname{dim} R / p+\operatorname{codim}_{R} \gamma \leqslant \operatorname{din} R$

Remark: Equality in (2) car be shict!
si Krull dimension \& Finite extensions:
Q: How dos dimension behan with uses to finite extensions?
Intuition: Finite extensions of quotients of preynmial ring conespod to finite dominant maps, so dimension in thesecases should be invariant under int egral extensions (by Theorem ($\$ 32.1$).
Lemma 3: For any finite rung extension $R \subseteq R^{\prime}$ we have $\operatorname{dem} R^{\prime}=\operatorname{dem} R$ Proof: We show the double inequality.
(\geqslant) Fix $P_{0} \subseteq \gamma_{1} \subseteq \cdots ¢_{\uparrow} \gamma_{c}$ chain of prime ideals in R. Using Lying-orn 4 going up (Lemma $2(2)$ a (3)) in $\varphi=$ inc: $R \longrightarrow R^{\prime}$ we can find a chain of
maximal idrals in $R^{\prime} \quad q_{0} \nsubseteq q_{1} \nsubseteq \ldots \nsubseteq q_{r}$ with $\varphi^{-1}\left(q_{i}\right)=\beta_{i} \quad \forall i$ Then $r \leq \operatorname{dem} R^{\prime}$. Taking sup gires $\operatorname{dim} R=\sup \leq \operatorname{dem} R^{\prime}$.
(\leqslant) girsm a chain $\gamma_{0}^{\prime} \subseteq P_{1}^{\prime} \subseteq \ldots \ldots P_{r}^{\prime}$ of prime ideals in R^{\prime}. We get a chain $\gamma_{0} \subseteq \gamma_{1} \subseteq \cdots \subseteq \gamma_{r} \quad$ of prim iduals in R lia $\gamma_{i}=\gamma_{i}^{\prime} \cap R=\varphi^{-1}\left(\gamma_{i}^{\prime}\right)$ By Inampaadility $\left(L_{\text {emmene } 2}(1)\right), \gamma_{i} \neq \gamma_{i+1}$ because $P_{i}^{\prime} \subseteq \gamma_{i+1}^{\prime}$. So, the chain in R is strict and thers $r \leq \operatorname{dim} R$. Takeing sup girres $\operatorname{din} R^{\prime}=\sup \leq \operatorname{dem} R$ in S2 Dimensin of $\mathbb{A}_{\bar{k}}^{n}$ is n :

Thurem 1 (Dimunsion of Preypumial Rings)
$F i x \mathbb{K}$ any field (not massarily affebraically losid) \& $n \in \mathbb{N}$. Then
(1) $\operatorname{dim} \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]=n$
(2) All $\underset{\text { (wx.c.t. indurim) }}{\operatorname{maximal}}$ chains prime ichals in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ hare leugth n.

Corollary 1: Any affime raviety $X \subseteq A_{\bar{K}}^{n}$ hor dimeusing at mat n. EqualiCy halds if \& m ly if $X=\mathbb{A}_{\bar{W}}^{\underline{\text { IN}}}$
Baoof: Write $x=x, \cup \cdots \cup x_{s}$ ined decompsorition of X. Then by Lemma $2 \leqslant 31.2$ we hax $\operatorname{lin} x=\max _{1 \leq i \leqslant s} \operatorname{din} x_{i}$. Now $\mathbb{K}\left[x_{i}\right]=\frac{\mathbb{K}\left[x_{1}, \ldots x_{n}\right]}{I\left(x_{i}\right)} \quad \&\left(x_{i}\right)=\gamma_{i}$ is
a pime idual in $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.
Since \mathcal{P}_{i} is always pact of a maximal chain of prine ideals $m x$ by Thm 2 we get: $\operatorname{dim} x_{i}=\operatorname{dim} \mathbb{K}\left[x_{i}\right]=n-\operatorname{codim} \beta_{R} \leqslant n$
and equatity holds if and only if $\operatorname{codim} P_{i}=0$, ie $P_{i}=0$.
Baoof of Thorem 1: We prose both statements by induction in $n((2) \Rightarrow(1)$ so mily reed To show (2)) Wrice $R_{n}:=\mathbb{K}\left[x_{1}, \ldots x_{n}\right]$
Base cases: $n=0$ is tautolosical ; $n=1$ is thee simce $\mathbb{K}[t]$ is a PID $(\$ 3,1)$
Inducture Stey: $n \geqslant 1$ Fix $P_{0} \subseteq \cdots \nsubseteq \nabla_{m}$ a dain at prime ileals in $\mathbb{K}_{\left[x_{1}, \cdots, x_{n}\right]}$ We need to show: (1) $m \leq n \&$ (2) equality wolds if the chaci is maximal

If the chain is maximal, we know that:

- $80=0$
- γ_{1} is a manual nonzero prime ideal $\left(\Rightarrow \gamma_{1}=(f)\right.$ po some $\left.f \neq 0\right)$
- P_{m} is a maximal ideal
L_{2} pick $f \in P, \sim$ Pos of mineral total doge $\left(\Rightarrow\right.$ it's inducible because γ_{1} is pine)
- $\gamma_{1}=(F)$ because R_{n} is a UFD

By Norther Nrmadizdim, we can consider $\mathbb{K}\left[u_{1}, \ldots u_{n}\right] \stackrel{\varphi}{\longrightarrow} \mathbb{K}\left[x_{1}, \ldots x_{n}\right]$ integral where $\tilde{f}=f\left(x_{1}(\underline{u}), \ldots, x_{n}(\underline{u})\right)$ is manic in $u_{n} . \quad\left(\underline{\underline{r}}=\pi \operatorname{dog}_{n} k\left[x_{1}, \ldots x_{n}\right]=x\right)$
Thus, (1) $\tilde{f} \in \mathbb{K}_{\left[u_{1}, \ldots u_{n}\right]}, \bar{u}_{n} \in \mathbb{K}\left[u_{1}, \ldots u_{n}\right] /(\tilde{f})$ is integral ore $\mathbb{K}_{\left[u_{1}, \ldots, u_{n-1}\right]}$
(2) $\mathbb{K}\left[u_{1}, \ldots u_{n}\right] /(\tilde{f})$ is intequal oren $\mathbb{K}_{\left[u_{1}, \ldots u_{n-1}\right]}$, so finite $\tilde{\gamma}_{1}=\varphi^{-1}(f)=(\tilde{f})$.

This gives a way T_{0} tianster chains on $R_{n(4)} T_{0}$ chain o in $R_{n=1}(\underline{n})$ via those in $\mathbb{K}\left[u_{1} \cdots u_{n}\right] /(\tilde{F})$

$$
\begin{aligned}
& \mathbb{K}_{[}\left[x_{1}, \ldots x_{n}\right]:(0)=\gamma_{0} \quad \not \subset \gamma_{1} \quad c \quad \not \subset \gamma_{m}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{K}_{\left[u_{1}, \ldots u_{n}\right]} / \tilde{\phi}_{1} \quad(0)=\tilde{\nabla}_{1} / \tilde{p}_{1} c+c \tilde{\nabla}_{m} / \tilde{\nabla}_{1} \quad \text { (interaction) }
\end{aligned}
$$

In all nous, the chains an strict by Incomparability (Lemma 2 (1))
Claim: These 4 chains are also maximal
Sf/. The chain in $\mathbb{K}\left[u_{1}, \ldots u_{n}\right]$ is maximal because otherwise by Lying aver \& going U_{Y} we will produce a chain extending the $\overline{\text { on }}$ one. Indeed, $\tilde{\gamma}_{i} \subseteq \beta \subseteq \tilde{\gamma}_{i+1}$ will fist $\tilde{\gamma}_{i}=\varphi^{-1}\left(\gamma_{i}\right)$ \& $\tilde{\gamma}_{i+1}=\varphi^{-1}\left(\gamma_{i+1}\right)$

$$
\begin{aligned}
& P_{i} \subseteq q \in q_{i+1} \text { м } \mathbb{R}=\mathbb{K}_{\left[x_{1}, \ldots x_{n}\right]} \\
& \frac{1}{\tilde{\beta}_{i}} \ddagger \beta^{\prime} \subseteq \tilde{\gamma}_{i+1}^{\prime} \quad \text { m } \quad R^{\prime}=\mathbb{K}\left[\begin{array}{l}
\left.\uparrow \varphi, \cdot ; u_{n}\right]
\end{array}\right.
\end{aligned}
$$

Key: By working with $\left(R^{\prime}\right)_{\tilde{p}_{i+1}} \xrightarrow{\varphi \tilde{p}_{i+1}}(R)_{P_{i+1}}$ (which is again finite since $\tilde{\gamma}_{i+1}=\varphi^{-1}\left(\beta_{i+1}\right)$ a bralizatim is exact), we can find $q^{\prime} \subseteq(\mathbb{R})_{p_{i+1}}$ prime with $\quad \varphi_{p_{i+1}}^{-1}\left(q^{\prime}\right)=\gamma \quad \& \quad P_{i} R_{p_{i+1}} \subseteq q^{\prime} \subseteq P_{i+1} R_{P_{i+1}}$

Thus $q:=q^{\prime} \cap R$ is a paine ideal with $\gamma_{i} \subset q \subset \gamma_{i+1}$ This cannot happen because ser chain in now 1 was already maximal.
Conclusion: The Chain in now 2 is maximal.

- Taking fustient puscurss maximality. So the chain in now 3 is also maximal.
- From wow 4 we us the same methods as ps those saying "row i maximal \Rightarrow wow 2 is also maximal", To conclude that now 4 is maximal because the me m now 3 was. 0

By inductive hypothesis; looking at the maximal chain in now 4 we get:

- $m-1 \leq n-1$.
. any $n \times l$ chain in $\mathbb{K}\left[u_{1}, . . u_{n-1}\right]$ has the same length $=n-1$
Therefore, $m \in n \&$ any maximal chain in $\mathbb{K}^{[}\left[x_{1} \ldots x_{n}\right]$ has length n
- We end this section with an alternative definitim of dimension of inducible varieties in terms of transcendence deques of functim fields ore \mathbb{K}.
Recall the following statement for Lecture 19
Theorem 1819.1: If X, Y ane affine nineties ore $\overline{\mathbb{K}}=\mathbb{K}, \Psi: X \longrightarrow Y$ is a finite selective spear map then $\operatorname{dem} X=\operatorname{dim} Y$.
Corollary 2: If X is an inducible affine variety oren $\bar{K}=\mathbb{K}$, then $\operatorname{dim} X=\hbar \operatorname{deg}_{\mathbb{K}} \mathbb{K}^{K}(X)$ In particular, $\operatorname{dim} X<\infty$ \& fo every $U \subseteq X$ nm-anifly oven, $\operatorname{dim} U=\operatorname{dim} X$.
Prof: By Nether Nrusalization we can custenct a finite dominant (hence sanjectic) map $X \longrightarrow \mathbb{A}^{r}$ where $r=\pi \operatorname{cog}_{\mathbb{K}} \mathbb{K}(x) \cdot B_{y} T h a r e m ~ 1 ~ £ 19.1, \operatorname{dim}(x)=\operatorname{dim}\left(\mathbb{A}_{\mathbb{K}}^{r}\right)=r$.
- The statement for $\sin x<\infty$ follows ham the fact that $\pi \operatorname{dog}_{\mathbb{K}} \mathbb{K}(x)<n$ if $x \leq \mathbb{R}_{\text {n }}^{n}$
- The claim about $U \subseteq X$ is a consequence of the fact that $\mathbb{K}(U)=\mathbb{K}(X)$.
§ 3 Krill's principal ideal Thrum :
Thereon 2 (Krill's Principe Ideal Therm) Let R be. Nertheican ing \& lt t $a \in R$ Then, erey minimal prime ideal 8 our (a) satisfies $\operatorname{coclim}_{R} P \leqslant 1$.
In order to pare Thuren 2 we make use of symbolic powers of prime ideals:

These ideals are used to study singularities it varieties defined ser fields with proture characteristic.

Definition: Let R be. Nertheician ring \& $P \subseteq R$ a pine ideal. Fr each $u \in \mathbb{N}$ we define the $n^{\text {th }}$ symbolic prover of P as:

$$
P^{(n)}=\left\{a \in R: b a \in \nabla^{n} \text { fo sine } b \in R, \beta\right\}
$$

Lemma 4: Given R, P \&n as above, we have:
(1) $P^{(n)} \subseteq R$ is an ideal $\& P^{(n+1)} \subseteq P^{(n)}$
(3) $\gamma^{(n)}$ is γ-primacy
(2) $8^{n} \subseteq 8^{(n)} \subseteq 8$
(4) $\gamma^{(n)} R_{\gamma}=\beta^{n} R_{p}$

Proof: (1) We show that $B^{(n)}$ is an ideal by checking 3 properties:

- $0=1 \cdot 0^{n} \in P^{n}$ and $1 \notin P$.
- $a_{1}, a_{2} \in B^{(n)}$ then $\exists b_{1}, b_{2} \notin B$ such that $b_{1} a_{1} \in P^{n}$ \& $b_{2} a_{2} \in P^{n}$. Then $\left(b, b_{2}\right) a_{1} \in P^{n} \&\left(b, b_{2}\right) a_{2} \in P^{n}$ with $\left(b, b_{2}\right) \notin P$.
Thus $\left(b_{1} b_{2}\right)\left(a_{1} \pm a_{2}\right) \in B^{n}$ yields $a_{1} \pm a_{2} \in 8^{(n)}$.
- $a \in P^{(n)}$ a $c \in R \stackrel{?}{\Rightarrow} c a \in P^{(n)}$.

Pick $b \notin P$ with $b a \in \beta^{n}$. Then $b(c a) \in \gamma^{n} a b \notin P \Rightarrow c a \in P^{(n)}$.
Fix $a \in \gamma^{(n+1)}$ a $b \notin \gamma$ with $b a \in \gamma^{n+1} \subseteq \gamma^{n}$. Then, $a \in \nabla^{(n)}$.
(2). If $a \in \beta^{n}$, then $a=1 \cdot a \in P^{n} \& 1 \notin P$. Then $a \in P^{(n)}$.

- If $a \in P^{(n)}$ then $b a \in P^{n} \subseteq P$ for soma $b \notin P$. Thus $a \in P$.
(3) By (2) we have $P=\sqrt{8}=\sqrt{8^{n}} \subseteq \sqrt{8^{(n)}} \subseteq \sqrt{8}=p$, so $\sqrt{8^{(n)}}=P$.

To see that $P^{(n)}$ is B-pumary we f ix $a b \in P^{(n)}$. and assume a\& $\gamma^{(n)}$
We caret to show that $b \in P$. We argue by contradictice.
Since $a b \in P^{(n)} \quad \exists c \notin P$ with $\quad c a b=c b a \in P^{n}$. Assuming that $b \notin P$, we get $c b \notin P, s \in a \in P^{(n)}$. This cannot happen by our assumption. Contradiction!

Thus, $b \in B$, as we wanted To show.
(4) We show the eprality holds by proving the double inclusion.
(c) Fix $\frac{b}{s} \in 8^{(n)} R_{\gamma}$ ie $s \notin Q \& \exists c \notin P$ with $c b \in \beta^{n}$. Then $\frac{b}{s}=\frac{c b}{c s} \in \beta^{n} R_{\gamma}$.
\Leftrightarrow Follows sima $\gamma^{n} \subseteq p^{(n)}$ so $\gamma^{n} R_{p} \subseteq \gamma^{(n)} R_{p}$.
Prot of Kail's PITman: We fix P a minimal prime ores (a). If $\operatorname{codim} P=0$, Here is nothing τ_{0} do.
Since localization is exact, we may assume R is local with maximal ideal P (replace R with R_{P}, which is also Nortwerane)
Assume $\underset{R}{\operatorname{crdim}} P>0$ \& $f\left(x\right.$ a chain $Q^{\prime} \subseteq Q \subseteq P$ pine ideals in R
To show colin $\beta \leqslant 1$ we nest verify that $Q^{\prime}=Q$. Taking the grotient of R by Q^{\prime}, we may assume $Q^{\prime}=0$ \& R is a feral Netheran domain.

- We must show that $Q=0$. For this, we insider the symbolic proves of Q By Lemme $4(1) \quad Q^{(n+1)} \subseteq Q^{(n)} \quad \forall n \in N$
Claim 1: $Q^{(n)} \subset Q^{(n+1)}+(a)$ fo same n
Sf/ $R /(a)$ is Neetherian \& of dimension 0 because $P /(a)$ is both minimal (by hypothesis) \& maximal $((R, 8)$ is local $\Rightarrow(R /(a), 8 /(a))$ is local). Thus, $R /(a)$ is Antimian ie it satisfies the descending chain condition: $\left(Q^{(0)}+(a)\right) /(a) \geq\left(Q^{(1)}+(a)\right) /(a) \geq \cdots \cdot$.
Thee $\exists n$ st $Q^{(n)}+(a)=Q^{(n+1)}+(a)$ fr some n \& so $Q^{(n)} \subseteq Q^{(n+1)}+(a)$. Claim 2: $Q^{(n)}=Q^{(n+1)}+P Q^{(n)}$ for same n

TF/ (2) is char
(C) Pick n as in Claim 1. If $b \in Q^{(n)}$, write $L=c+r a$ fr $c \in Q^{(n+1)} \& r \in R$. Then, $r a=b-c \in Q^{(n)}$ by Lemma 4 (1)

- Since P is minimal oren $a, \& Q \subset P$ we hare $a \notin Q=\sqrt{Q^{(1)}}$ by Lemme a 4
- Since $Q^{(n)}$ is Q-primary by comma 4 (3), we here $r \in Q^{(n)}$

Conclusion: $b=c+\underset{=}{\text { ar }} \in Q^{(n+1)}+\gamma Q^{(4)}$, as we wanted.

- Take the patient by $Q^{(n+1)}$ in Claim 2 to git:

$$
\frac{Q^{(n)}}{Q^{(n+1)}}=P \frac{Q^{(n)}}{Q^{(n+1)}}
$$

Sine $Q^{(n)}$ is $F_{g}\left(R\right.$ is Neetherion), so is $\frac{Q^{(n)}}{Q^{(n+1)}}$. Since (R, P) is local, Nakayama's Lemma implies $\frac{Q^{(n)}}{Q^{(n+1)}}=0$, ie $Q^{(n)}=Q^{(n+1)}$.

- Localizing away fum Q is exact, so $Q^{(n)} R_{Q}=Q^{(n+1)} R_{Q}$ By Lemmas 4 (4) we have

$$
Q^{n} R_{Q}=Q^{(n)} R_{Q}=Q^{(n+1)} R_{Q}=Q^{n+1} R_{Q}=\left(Q R_{Q}\right)\left(Q^{n} R_{Q}\right)
$$

Again, Nakayama's Lemma applied to the fo R_{Q}-nusenle $Q^{n} R_{Q}$ sires $Q^{n} R_{Q}=0$. since R was integral, so is R_{Q}. Conduce: $Q^{n}=0$, so $Q=0$.

