Last Time : we discussed the following 2 theorems :

31 More on Knull's Principal I deal Thrown:

brothang 1: Let R be Northerian ring a all be a non-zero divisor. Then for
every minimal prime ideal B ore (a) we have colone
$$B = 1$$
.
Broth: We not the characterization of associated primes of (0) from Lecture 6. Let
 $B_{1,...,}B_{\Gamma}$ be the minimal primes of R ore (o). By Proposition 2 = 6.3:
 $B_{1} = \sqrt{(0:b_{1})}$ for some $b_{1} \in \mathbb{R}$. Not
 $b_{1} \neq 0$ because B_{1} is a proper ideal of R)
(laim 1:a non-quo divident => a & B_{1} for all $2:1,...,r$
 $Fr/ Otherwise, a \in \sqrt{(0:b_{1})}$ for some is Thus a $b_{1} = 0$ for some $m \in \mathbb{N}$
Pecking m minimal we see $a^{m}b_{1} = a(a^{m-1}b_{1}) = 0$ forcing a To be
a quo-divisor - but a minimal prime of R
 $Fr/ a \in B$, $a \notin B_{1}$ $H = 1,...,r$. $a = \pi \ln(R) = 3B_{1,...,N}r$.
Thus $B_{1} \notin S$ for some i . Therefore $codoine B \ge 1$.

in an ineducible component Y' of X'. By Lemma 5 ≤ 31.2 : $\operatorname{codem}_{X_i} Y = \max_{1 \leq i \leq s} \left\{ \operatorname{codem}_{X_i} (Y) : Y \subseteq X_i \right\}$ (*)

where $X' = \bigcup_{i=1}^{N} X_i'$ is the ineducible decomposition of X'. Pick $Y' = X_i'$ malizing this marximum value.

 $\operatorname{codim}_{Y} Y + \operatorname{codim}_{X} Y' = \operatorname{codim}_{X} Y \quad \operatorname{because} X \text{ is assumed to be}$ ineducible a every maximal chain of prime ideals in $(K[K_1, -X_n])$ has length Y(ble can extend the chain $I(Y) \neq I(Y') \neq I(X)$ to a maximal one)
Thus, $\operatorname{codim}_{X} Y = \operatorname{codim}_{Y} Y + \operatorname{codim}_{X} Y' = \operatorname{codim}_{X} Y + \operatorname{codim}_{X} Y' \leq \Gamma$, as
we wrated to show.

. We have a partial converse to this statement.
Proposition 2: Let X be an affine variety math-lk. If Y is an ineducible closed subset of X
with codim
$$X = r \gg 1$$
, then there are $F_1, ..., F_r \in O(X)$ such that Y is an
ineducible component of $V(F_1, ..., F_r)$.
We should not expect $Y = V(F_1, ..., F_r)$.
We should not expect $Y = V(F_1, ..., F_r)$.