Recall the following assults from last time :

Three [Keull): Let X be a queri-affine miety over $\mathbb{K}_{\mathbb{K}}$ and fix $f \in O(X)$. Then, any ineducible component Y of $V_{X}(f) = 3u \in X | f(u) = 0$ has $\operatorname{codim}_{X} Y \leq 1$. Furthermore equality holds if f is a new-zero divisor m O(X).

Corollary: Let X be a quasi-affine miety over $\mathbb{K}_{\mathbb{K}}$ and fix $f_1, \ldots, f_r \in O(X)$. Then, any ineducible component Y of $V_{X}(f_1, \ldots, f_r)$ has $\operatorname{codim}_{X} Y \leq r$. ≤ 1 More m Kaull's Theorem:

. We have a partial comments to the corollary :.

Proposition 1: Let X be an affine venicity market. If Y is an ineducible closed subset of X with codim_x Y = r > 1, then there are $F_{1,...,F_{r}} \in O(X)$ such that Y is an ineducible component of $V(F_{1,...,F_{r}})$. <u>Proof</u>: Let $X_{1,...,X_{s}}$ be the ineducible components of X. <u>Othern</u>: $\exists F_{1} \in I(Y)$ with $X_{i} \notin V(F_{1})$ $\forall i$ $\Im F_{i}$ We arapse by intradiction. If this is not the case then for all $F \in I_{x}(Y)$ we have $X_{i} \subseteq V(F)$ for some z. Therefore, $F \in I(X_{i})$ by the Nullstellensete

Thus $\underline{T}_{X}(Y) \subseteq \bigcup_{i=1}^{n} \underline{T}_{X}(X_{i})$ (*)

Fince when $X = \max \{ when X : Y \le X : k : \leq r > 1 \ by Lemma s $$1.2 we when that$ $<math>when Y > 1 \ for all i with Y \le X : (otherwise, Y = X : e X : <math>\notin X : i = j \neq i$ will give r = 0) Thus $I_X(Y) \notin I_X(Xi)$ $\forall i = 1, \dots, s$ By Prime Avoidance, we cannot have (k) Contradiction! Now, choose f_1 as in Claim 1. Peck i with $Y \le X : with codin = r$

(such i exists by Lemma 5 § 31.2). Then $Y \subseteq V_X(F_1) \subseteq X \implies Y \subseteq V_{X_i}(F_1) \subsetneq X_i$ include i imed & F, is a non-que divisor on O(X;). <u>Uleim 2</u>: corlim Y ≤ r-1 V(fi) 3F/ Any incl component ? of Vx; (4,) has coolin ≤ 1 in X; Since $\operatorname{crdim} Y = \operatorname{max} \{\operatorname{crdim} Y : Y \leq Y_{ij}\}$ $Y_{x_i}(F_i) = \operatorname{max} \{\operatorname{crdim} Y_{ij} : Y \leq Y_{ij}\}$ (**) $r \ge cordin \times_i Y = cordin \times_i Y + cordin \times_i Y_i$ whenever Y CYij SXi an ineducible = 1 by locollary 1 Picking Yij realizing the max in (**), we get Note: $V_{\chi}(k_1) = \bigcup_{i=1}^{n} V_{\kappa_i}(k_i)$. We proceed by including r. · Base case : 5=1 Then $\operatorname{codem} Y \subseteq O$ yields $\operatorname{codem} Y = O$ is Y is an ined component of $V_X(F_1)$ $V_{X_i}(F_i)$ $V_{X_i}(F_i)$ • Inductive Step: set $S = \operatorname{coolim}_{X_i(F_i)}^{Y} \otimes X' = V_{X_i}(F_i) \subseteq X$. If S=0, then Y is an ined component of $V_{X_i}(F_i)$, hence one of $V_X(F_i)$ Taking $f_2 = \cdots = f_r = f_1$ shows Y is an ined cup of $V_X(f_1, \dots, f_r)$ $\mathbb{T}_{F} \leq \mathbb{F}_{1}, \quad \mathbb{T}_{Y} \in \mathbb{T}_{Y} = \mathbb{T}_{X}(Y) \quad \mathbb{T}_{Y} \in \mathbb{T}_{Y}(Y) \quad \mathbb{T}_{Y} \in \mathbb{T}_{Y}(Y) \quad \mathbb{T}_{Y} \in \mathbb{T}_{Y}(Y)$ ined component of $V_{X1}(F_{2},...,F_{S}) = V_{X1}(F_{11},...,F_{S}) = X_1 \cap V(F_{1},...,F_{S})$. If s=r-1 this shows Y is an ined comp of Vx (fr. .- fr.) . If s(r-1), take $f_s = f_{s+1} = \dots = f_r$ to get $V_X(f_1,\dots,f_s) = V_x(f_1,\dots,f_r)$ and, thus Y is an inclucible component of $V_X(F_1,...,F_r)$. ຼ

We cannot expect to find $F_1...F_r$ with $Y = V_X(F_1...,F_r)$, not even if we are willing to audicat to athing opens in both sides around any point of Y.

The only optim is
$$a_{\pm}b_{\pm}0$$
 $r_{\pm}s_{\pm}0$, But $\tilde{k}x_{1} + \tilde{b}x_{3} = 0$ commot happen
where x_{1}^{m} , $x_{3}^{m} \neq 0$.
CASE 2: $g \in k[r_{N,...,x_{n}}] \setminus K$ with $g(0,0,0) \neq 0$.
We argue similarly to case 1, incorporating proves of g into the (RHS) expressions.
The endition $(k, x_{1}x_{2}-x_{3}x_{4})_{(5)} \subseteq (k_{1}, x_{3})_{(5)}$ frees k to $\tilde{k} \in (k, x_{1}x_{2}-x_{3}x_{4})$
 $g^{k}x_{3}^{m} \in (g^{k}k, g^{k}(x_{1}x_{2}-x_{3}x_{4}))$
 $g^{k}x_{3}^{m} \in (g^{k}k, x_{1}x_{2}-x_{3}x_{4})$
 $g^{k}x_{3}^{m} \in (g^{k}k, x_{1}x_{2}-x_{3}x_{4})$
 $g^{k}x_{3}^{m} \in (g^{k}k, x_{1}x_{2}-x_{3}x_{4})$
Write $s = l + l_{k} \ge 0$. We can find $h_{1}, h_{1}, h_{3}, h_{3}' \in K(r_{1}, x_{2}, x_{2}, x_{2})$ such that:
 $g^{5}x_{3}^{m} = h_{3}(Ax_{1} + bx_{3}) + h_{3}'(x_{1}x_{2}-x_{3}x_{4})$
Silling $k_{2} = x_{4} = 0$ fines:
 $g^{5}x_{3}^{m} = h_{3}(Ax_{1} + bx_{3}) + h_{3}'(x_{1}x_{2}-x_{3}x_{4})$
Since $\overline{g}(0,0) \neq 0$, we know that $\widetilde{g} \notin \langle x_{1}, x_{3} \rangle$
 $= I + x_{1} \neq \widetilde{A}x_{1} + \overline{b}x_{3}$, then $x_{1}^{m} | \widetilde{h}_{1} + a$ so $\overline{g}^{5} = \frac{h_{1}}{x_{1}} (Ax_{1} + bx_{3}) \in (x_{1}, x_{2})$
Thus, $\widetilde{g} \in \sqrt{\langle x_{1}, x_{2} \rangle = \langle x_{1}, x_{3} \rangle$ for k_{1} .
Similarly $x_{3} \neq \widetilde{A} \times 1 \oplus \widetilde{B} \times 1 \oplus \widetilde{g}^{5} = \langle x_{1}, x_{3} \rangle$ for k_{1} .
The particular , $x_{1}x_{3} \mid \widetilde{A} \times 1 \oplus \widetilde{A} \times 1 \oplus \widetilde{g}^{5} = x_{3} \mid \widetilde{g} \times x_{1} \mid \widetilde{g}$. Thus, ince $h(x_{1}, x_{3}) \mid \widetilde{a} \times 1 \oplus \widetilde{g}^{5} = x_{1} \mid \widetilde{a} \times 0 = \widetilde{g}^{5} = \frac{h_{1}}{x_{1}} (Ax_{1} + Bx_{2}) \in \langle x_{1}, x_{2} \rangle$
Thus, $\widetilde{g} \in \sqrt{\langle x_{1}, x_{2} \rangle = \langle x_{1}, x_{3} \rangle = (a_{1}k_{1})$. This cannot happen because $\widetilde{g} \notin \langle x_{1}, x_{2} \rangle$.

$$Y = V \cap Y' \qquad \stackrel{\text{or } n}{A^n} \stackrel{\text{or } n}{A^m} \stackrel{\text{or }$$

• We'll ned the following about from \$31.2
Lemma 4 \$37.2: Fix X topological space,
$$Y \subseteq X$$
 closed inclucible & U \subseteq X of m with
 $U \cap Y \neq \phi$. Then $codim_U(U \cap Y) = codim_X(Y)$.

. Thrown 1 § 32.1 (finite surjective morphisms of affine varieties over TK=1K preserve demensions) is unsistent with the following results discussing how demension interacto with phons of regular dominant maps.

. Thurm 1 : Let X, Y be inclucible quari-affine mitties a let F: X -> Y be a dominant regular map. Let ZSY be closed a inclucible & W be an inclucible component of F'(Z) that dominates Z. Then :

(1) codim x W ≤ codim Z
(2) dem W ≥ dim Z + ti dig |K(X).
In particular, for every y ∈ image(F), all iniducible components of f (y) have demension > dim X - dim Y.

$$\begin{array}{l} \text{compound of } V(g_1, ..., g_s) = V_y() \\ Y \\ \text{Since } W \subseteq F^{-1}(Z) \quad \text{we have } W \subseteq F^{-1}(V_y()) = V(f_{$$

• $V \neq \phi$ because Y is impluible

• $W = \bigcup_{i=1}^{U} (W \cap U_i)$ satisfies • $W_i = W \cap U_i$ is an ineducible component of $f_i^{(2)}(z)$ & it dominates z.

By Lomma 4 § 31.2 cooling,
$$W_{i} = codin_{X} W$$
 as we want to show.
choice of $V_{i} \rightarrow 11^{i}$
coding $\chi \ge$

• Since $X \xrightarrow{F} Y$ is any dominant with X, Y at hime ineclucible, we consider $F_Y^{\#}$: $K(Y) \xrightarrow{F} K(X)$ the induce homomorphism of sings (injective rince to is dominant) . We consider the |K(Y) - algebra: $S := |K(X) \otimes |K(Y)$

We consider the M(Y)-algibra:
$$D := K[X] \otimes IK(Y)$$

IK(Y)

. Propulsion of S: S is a domain $(|K[x] \in S \subseteq |K(x)) \approx |K(y) \in S$. • Quot(S) = |K[x]• Tring Quot(S) = Tring |K(x) =: r|K(y) = |K(y)

By Noether Normalization, we can find $y_1, \dots, y_r \in S$ algebraically independent or K(y) such that $\alpha : K(y) [y_1, \dots, y_r] \longrightarrow S$ is finite.

Replacing each y_i by a_iy_i for some $a_i \in IK[y]$, we may assume $y_i \in IK[x]$ for all i=1,...,r.

Claim 2:
$$\exists s \in |K[Y] \setminus sof such that$$

 $\Psi: |K[Y]_{(s)} [y_1, \dots, y_r] \longrightarrow |K[x] (f^{*}(s))$

is finite

$$3F/$$
 White $|K[x] = \frac{K[x_1 \dots x_n]}{I(x)}$ & rice $\overline{K_1, \dots, \overline{K_n}}$ as generators of $|K[x]$ as
 $a | K-algebra.$ By construction $\overline{x_c} \in S$ $\forall i = 1, \dots, n$. We assume $\overline{x_i} \neq 0$, $\forall i$
Since α is finite, is know $\overline{x_i}$ satisfies a nonic equation :
 $\overline{x_i}^{mi} \neq a_{i,1} \ \overline{x_i}^{mi-1} + \dots + a_{i,mi} = 0$ for some $m_i \ge 0$
with $a_{i,j} \in |K(y) [\forall_1 \dots \forall_r]$

Prode SE K[Y] 309 with Sqij E K[Y] [Y,...,Yr]. Yi, j.
Then
$$\overline{x}_i$$
 is integrad area $|K[Y]_{(S)}(Y_1,...,Y_r]$ $\forall i=1,...,x$
Conclusion: $\Psi: |K[Y]_{(S)}(B_1,...,Y_r] \longrightarrow |K[X](f^{\#}(S)) = K[X]_{(f^{\#}(S))}$
Recall $U(D_Y(S)) = K[Y]_{(S)} \qquad U(D_X(f^{\#}(S))) = K(X]_{(f^{\#}(S))}$
by Theorem 1 $\equiv 28.1$ ($\overline{K} = |K|$)
Replacing $f:X \longrightarrow Y$ by $D_X(f^{\#}(S)) \xrightarrow{f} D_Y(S)$ which is doe
angular a dominant between office varieties, we use the map Ψ from Elaim 2 to factor
 F ria $X \xrightarrow{f} U \xrightarrow{f} U$
 $g^{\#} = \Psi$ is finite A S is dominant so S is Sugreture by Theorem 1 $\equiv 29.1$
Therefore, $F = g_1 \circ g$ is sujective
• Picking Z a W so in the statement, we get $g(W) \subseteq Z \times IX^{C}$.
• Theorem 1 $\equiv 32.1$ gives dim $g(W) \lesssim \dim (Z \times A^{C}) = \dim Z + \dim IA^{C}$
 $\lim_{H \to T} U \xrightarrow{g \to 32.2} V$ for $W = \dim g(W)$

We end by discussing an important corollary:
Corollary 1: IF
$$f: X \rightarrow Y$$
 is a morphism of quasi-affine varieties such that all filess
of F have dimension r (in particular, F is surjective), then dim $X = \dim Y + r$.
Baoof: IF Y,..., Ym an the ineducible components of Y, each morphism $F'(Y_i) \rightarrow Y_i$
bos all fibers of demension r . Since dim $X = \max_{1 \le i \le m} dm F'(Y_i)$ and dim $Y = \max_{1 \le i \le m} dm Y_i$
by Lemma 2 831.2, then it suffices to prove the statement other Y is ineducible.
Let $X = X_1 \cup \cdots \cup X_s$ be the ineducible decomposition of X, a write
 $di = \dim X_i - \dim(\overline{F(X_i)})$

. By Theorem 2 there is an open subset V_i of $\overline{F(X_i)}$ with $V_i \subseteq F(X_i)$ such that every fiber of $h_i: X_i \longrightarrow \overline{F(X_i)}$ our a point in V_i has dimension d_i be prove the statement by checking that both inequalities hold.

<u>Remark</u>: Note that the set ∩Vi ≠ Ø became Y is ineducible (we can prove this by induction m m combined with the fact that ineducible sets are connected)
(€) By construction di≤r for all i. In particular:
dim (Xi) = di + dim (F(Xi)) ≤ r + dim (F(Xi)) ≤ r + dim 1
by Lemma 1 § 31.2.

(7) To show \geqslant we much find a mitable is with $\dim(X_{io}) \ge r + \dim Y$. Pictorially: $X_i = V_i$ we wont to pick is such that $\dim F_{io}(y)$ is maximal $X_i = V_i$ By constantion: $\dim F_{io}(y) = \max_{\substack{i \le i \le m \\ i \le i \le n \\ i \le n$

Furthermore, we have: <u>Uain</u>: $\overline{F(X_{i_0})} = Y$ $\overline{SF}/\overline{Since V_{i_0}} \subseteq \overline{F(X_{i_0})} \subseteq Y$ a V_{i_0} is open in Y which is ineducible, it follows that $Y = \overline{V_{i_0}} \subseteq \overline{F(X_{i_0})} \subseteq Y$, ie $\overline{F(X_{i_0})} = Y$. Thus dim $(X_{i_0}) = \overline{V_{i_0}} \subseteq \overline{V_{i$