$\frac{Recall}{T_{p} \times = T_{p} \cup := \left(\frac{M_{p}}{M_{p}} \right)^{v} = H_{m} \left(\frac{M_{p}}{M_{p}} \right)^{v} = K \qquad M_{p} = 0, p \leq 0, p \leq$

$$\frac{\delta I}{Iangust} \frac{\delta I}{Spaces} \frac{\delta T}{Spaces} \frac{\delta T}{Space} \frac{\delta I}{Space} \frac{\delta I}{S} \frac{I}{Space} \frac{\delta T}{Spaces} \frac{\delta T}{Spaces$$

Have
$$\sum_{j=0}^{n} \frac{2E}{\delta x_{j}}(\lambda p) X_{j} = \lambda^{d-1} \sum_{j=0}^{n} \frac{2E}{\delta x_{j}}(p) X_{j}$$
, so the (RHS) is independent of the choice of improvementation for $p \in Y$.
• Euclus's identity $\left(deg f \cdot f = \sum_{j=0}^{n} \frac{2E}{\delta x_{j}} X_{j}^{*} \right)$ for any F handqueeness) infinites that $p \in Tp X$
• Euclus's identity $\left(deg f \cdot f = \sum_{j=0}^{n} \frac{2E}{\delta x_{j}} X_{j}^{*} \right)$ for any F handqueeness) infinites that $p \in Tp X$
• For the second put, with that if $f = \sum_{j=0}^{n} \frac{2E}{\delta x_{j}} (f)$ with $\langle f_{j,...} C_{r} \rangle$ so in the statement $g \in F \in T(X)$ is handqueeness, then we can assume s_{j} 's and do handqueeness.
The product sub-continued with the caldition $f_{j}(p) = 0$ the gives
 $\sum_{i=0}^{n} \frac{2E}{\delta x_{i}}(p) X_{i}^{*} = \sum_{i=0}^{n} \sum_{j=1}^{n} S_{j}(p) \frac{2E}{\delta x_{i}}(p) X_{i}^{*} = \sum_{j=1}^{n} \frac{2E}{\delta j}(p) \left(\sum_{i=0}^{n} \frac{2E}{\delta x_{i}}(p) X_{i}^{*} \right)$
This entires the last claim.
Q Is $T_{p}X \propto uno$ effect? A: $Tr's = translation of the classical $T_{p}X_{i}^{*}$
 $\frac{Prophysicin I}{D(2 - E^{N_{i}})} Let X \subseteq Tr' be a projective mainty an $p \in X \cdot Trix iE(0,...,n)$
with $p \in U_{i} \in A^{N_{i}}$ then $(T_{p}X) \cap U_{i} = T_{p}(X \cap U_{i}) + p$
 $\frac{U_{i}^{i}}{U_{i}}(X_{i}) = \langle F_{i}(x_{1},...,x_{n}) \rangle : F \in T(X)$ handqueenes $\sum = (F_{i}(x_{1},...,x_{n}) + F_{i}(1)x_{1}...x_{n}) > if T(X) = \langle F_{i}(x_{1},...,x_{n}) + F_{i}(1)x_{1}...x_{n} \rangle > if T(X) = \langle F_{i}(x_{1},...,x_{n}) + F_{i}(1)x_{1}...x_{n} \rangle > if T(X) = \langle F_{i}(x_{1},...,x_{n}) + \frac{2E}{\delta x_{i}}(1)F_{1}...F_{n})$ for all $f \in T(X)$ handqueeness
 $\frac{2E}{\delta x_{i}}(y_{i}(y_{i}-y_{i}) + \sum_{i=1}^{n} \frac{2E}{\delta x_{i}}(1)F_{1}...F_{n})$ for all $f \in T_{i}(X)$ handqueeness
Thus $\frac{2E}{\delta x_{i}}(y_{i}(y_{i}-y_{i}) + \sum_{i=1}^{n} \frac{2E}{\delta x_{i}}(1)F_{1}...F_{n})$ for all $f \in T_{i}(X)$ handqueeness
Thus $\frac{2E}{\delta x_{i}}(y_{i}(y_{i}-y_{i}) + \sum_{i=1}^{n} \frac{2E}{\delta x_{i}}(1)F_{1}...F_{n}) \in T_{i}(X_{i}(y_{i}-y_{n})(X_{i}-y_{i})$$$

<u>(rollary 1</u>: Fix two projective unicties $X \subseteq \mathbb{R}^m$, $Y \subseteq \mathbb{R}^n$ & a rational map F: X = -->Ygiven by n+1 hangemous polynomials $\{F_0, \dots, F_n\}$ of the same degree. IF $p \in X \cap Dm F$ then F induces a linear map dF_p $T_p X \longrightarrow T_{F(p)}Y$. Furthermore, (1) The map defends solely on F & not a the polynomials representing it (2) If F is binational A = F' is regular at F(p), then dF_p is an isomorphism. (3) The assignment is functorial. Broof: The construction of dF_p by low the office can convisced with Paop 4

Side: The construction of 2+p follows from the other can construct with prop.4.
It construction of 2+p information of
$$\frac{1}{2}$$
 is $\frac{1}{2}$ is \frac

Thus
$$\frac{\partial (F_{i} - F_{i})}{\partial x_{i}}(p) = \left(\frac{\partial F_{i}}{\partial x_{i}}(p) \otimes (p) - F_{i}(p) \frac{\partial Q_{i}}{\partial x_{i}}(p)\right) / Q_{i}^{z}(p)$$

= $\frac{1}{Q_{i}(p)} \frac{\partial P_{i}}{\partial x_{i}}(p)$

If
$$\underline{r} \in T_{p} \times$$
 we have $\frac{1}{\vartheta_{j}(p)} \sum_{i=0}^{j} v_{i} \frac{\partial P_{j}}{\partial x_{i}}(p) = \frac{1}{\vartheta_{j}(p)} \cdot 0 = 0$, thus:
 $\sum_{i=0}^{m} v_{i} \frac{\partial T'_{j}}{\partial x_{i}}(p) = \sum_{i=0}^{m} v_{i} \frac{\partial F_{j}(p)}{\partial x_{i}}$ is indupendent of the
doive of tuple.
(3) The transformating statement follows for the affirm case $(d_{p} \circ \Psi = d_{p} \circ d_{p} \Psi)$
(2) is a consequence of the functoriality ε the fact that the construction is local
 $T_{p} \cup = T_{p} \times \varepsilon = T_{T}(p) \vee = T_{T}(p) \vee if = \bigcup_{T_{i} \vee V} \nabla$
 $\frac{2}{T_{i}} \sum_{i=0}^{m} v_{i} \times d_{i} = \frac{1}{T_{i}} v_{i} \times \frac{1}{T_{i}} = \frac{1}{T_{i}} v_{i}$

tix X abstract algebraic unity sur K=lk & pick $p \in X$. Definition: dim $_{p} X := dim U_{X,p} = codim _{X} P$. Lemma 2: dim $_{p} X = \max_{1 \leq i \leq s} i \dim_{p} X_{i} | p \in X_{i} i \quad i \in X = X_{1} \cup \dots \cup X_{s} \text{ is the inclusion } qX$ \underline{Paooh} : We may assume X is affine by working with an open affine U on X intaining P. By instruction, $U = (X, \cap U) \cup \dots \cup (X_{s} \cap U)$ is the included formula decomp of X, extended possibly by φ 's. If $B_{i} = I(X_{i})$ $P \in X_{i} \bigoplus_{p \in X_{i}} M_{p} \supseteq B_{i} U_{X,p} = B_{i} (K_{i} X) M_{p}$

bince $O_{X,p}$ has finite dimension, a maximal chain realizing dim $O_{X,p}$ corresponds to a maximual chain starting at a minimal prime of $O_{X,p}$ & ending at Mp. Since minimal primes compand to ined emprents of X, the exactly follows. D Theorem 1: dim _{IK} $TpX \ge dim pX$. Thus, a jump in dimension will detect singularities Definition: A point $p \in X$ is <u>maximpular</u> (or signlar, or <u>smooth</u>) if $dem_{IK} TpX = dempX$

Otherwite, we say
$$p$$
 is simplex.
The unity X is unitialized (so smooth) if all its probate an empotent.
To prove Theorem 2, we show a nore prival statement:
Proposition 2: For every local ring (F,M) that is the localization of a K-algebra
of finite-type at a prime ideal, we have
 $\lim_{k \to \infty} R = \frac{1}{k} \lim_{k \to \infty} \frac{1}{k$

. Since R is uduced, f is stuilprint. Thus,
$$S_1, F_1, F_2, \dots, F_n$$
 is multiplicatively doed
. By construction, ∇A_F is generated by Γ elements w'_1, \dots, w'_n , where
 $w'_{i:=} (a_i \frac{\pi}{J+i}F_i)/F$ $\forall i'=1, \dots \Gamma$.
. Since $(A_F)_{\nabla A_F} = A_{\mathcal{B}}$, we can replace A by A_F which is a also educed
[$\left(\frac{a}{F_i}\right)^n = 0$ in A_F \Longrightarrow $\exists k \ge 0$ st $F^k a^n = 0$. Thus $F^{kn} a^n = (F^k a)^n = 0$
 \Rightarrow $F^k a = 0 \implies \frac{a}{F_i} = 0$ in A_F]
A induced
Thus, $\mathcal{R} = (A_F)_{\mathcal{B}A_F}$ a dim $\mathcal{R} =$ cooline ∇A_F . Note: $A_F = \mathbb{K}[D_X(F)]$
. ∇A_F is the defining ideal of a variety in the quest-affine variety $D_X(F)$
 $Y := V_{D(F)}(w'_1, \dots, w'_r) \le D_X(F) \le X \le M^n$

Since ∂A_{F} is prime, Y is inclucible. By locallary $3 \leq 34.1$, where: codim $Y \leq \Gamma$, so dem R = codim $Y \leq \Gamma$.