Lecture XXXVIII: Regular local sings & Smoothness of Varieties Last Time: We defined smooth / singular points of minities one K=1K. Proposition: For every local ring (R, M) that is the localization of a K-algebra of finite-type at a gaine ideal, we have dein R = dein K M/m² Where K = TK = R/MThure: Given X algebraic minity over K = 1K a geX we have dem Tp X > dim p X:= dem $0_{X,P} = max 3 dim Xi : PEXit$ if X = X10...UXs is the invariable decomp of X Definition: peX is a smooth / non-vingular / negular point and dim Tp X = dumpX g: What is the nature of a precise point of X?

SI Regular bood sings:
Remark: The curve of the proof of Proposition 2537.2 is Kull's Principal Ideal Thm. Theo,
the statement is also true for Noetherian local rings.
Corollary1: Given a Noetherian local ring
$$(R, M)$$
 we have,
dim $R \subseteq \dim_{R/M} M/M^2$
In particular, R has finite Kaull demension

Furthermore, equality holds if, and mly if *M* is generated by a regular sequence (ie } f_1,..., f_r { st . f_1 is a non-zero divisor in R . t i=1,..., f_r } F_{i+1} is a non-zero divisor in R/(f_1,...,f_r))

Definition: We say a Northerian local ring (R, M) is repular if dim R = dem R/m /2 For such rings, a regular system of parameters for M is a minimal set of generators of M (hence, of size = dem R) Theorem 1: A Northenian negular local ring is a domain . We will show a slightly weaker result, and then use it to prove Theorem 1. We'll need the following definition : the associate praded sing of R : Definition: given (R, M) Northerian local ring, $S := q_m R = \bigoplus_{k \ge 0}$ m k+1 Name: Sk: = M/k ht graded piece • $S_0 = \frac{m'}{m} = \frac{R}{m} = \frac{K}{m}$ (mider field) · S is a ring with multiplication between granded pieces defined as Mk × Ml w k+l (ā, ī) \longmapsto ab (extended linearly to SxS ___ S) In particular, Spisa 1K-vector space the Remark. The construction is more queed. For any A Northerian ring & ISA ideal, the associated paded $y_{I}R = \bigoplus_{n \in I} \prod_{i=1}^{n} is a Northerizan ring & an <math>R_{I}$ -module. Thurem 2: If (R, M) is ngular Northenian local ring, then p. R is a domain. Furthermore, it is isomorphic To [K[y],...,y] where d=dem R. Bassf: Set d = dem R & pick a1,...,a generators for M. Since R is regular, then lar,..., ast is a regular sequence. Set S = gr m R By construction, 19,..., az YES, is alk-basis for S,. Define the graded he algebra hummorphism $\varphi: \mathbb{K}[x_1, \dots, x_d] \longrightarrow S$ $x_i \longrightarrow \overline{q}_i$ so $\Psi(P(\underline{x})) = P(\overline{a}, \dots, \overline{a})$ By construction, 4 is surjective. Claim I: dim R = dem gry R because Ris a Nertherian local ring (see Exercise 13.8 in Eisenbud's Comm. Alg Look) SF/ dim grom R = dim Rm

Claim z ; l'is injective : 36/ l'is a surjective ning hommosphism Letween Two nings of the same dimension, and the domain of l is a domain.

A chain of prime ideals $\mathcal{B}_0 \subsetneq \mathcal{B}_1 \subsetneq \dots \simeq \mathcal{B}_s$ in $\mathcal{B}_m \mathbb{R}$ of lingth lingth $d = \dim \mathcal{B}_m \mathbb{R}$ yields a proper chain of prime ideals in \mathbb{R} since \mathbb{R} is surjective!

$$q_0 \neq q_1 \neq \cdots \neq q_d$$

If $g_0 \neq \{0\}$, we can extend this to a maximal chain in $[K_{[X_1, X_3]}]$ lingth stilling of $\varphi = g_0 \neq g_1 \neq \cdots \neq g_2$. This cannot happen because den $[K_{[X_1, \cdots, X_3]}] = d$ by Theorem 1 § 35.2. <u>Conclusion</u>: $g_0 = 50$? so $\mathcal{D}_0 = \mathcal{P}(o) = \{0\}$ ie $g_0 = Ker \mathcal{P} = 30$?

<u>Propriitin 1</u>: If (R, M) is Northerian local & $g_{1M}R$ is a douain, then so is R<u>3roof</u>: We set $S = \chi_{1M}R$ & assume it is a domain. We want to show Ris also a domain. We argue by cartaadiction & pick $a, b \in R \setminus \{0\}$ with ab = 0By Knull's Intersection Theorem : $\bigcap M^{h} = 10$? (because (R, M) is Northerian e local). Thus, $\exists i, j$ with $a \in M^{2} \setminus M^{(H)}$ is $b \in M^{3} \setminus M^{(H)}$.

In particular $\overline{a}, \overline{5} \in S \setminus 109$ & $\overline{a5} = 0$ in S. This cannot hoppen since S is a domain.