$$\frac{\lfloor x \text{ Clarked} \times XXIX : Smoothness + Blow-upp of affine varieties}$$

Betintin: Given an algebraic variety X over $K = K$, we write
 $X_{\text{smill}} : q_{\text{selex}} = q_{\text{selex}} + q_{\text{selex}} = q_{\text{selex}} + q_{$

Using Proporition 1 \$ 37.1, we get a projection recoin of the same criterion

lorollory z (Projective Jacobian criterion) Fix X GR" a projective voniety our IK=IK & PEX. White I(x)=<F1,..., hr> where t,..., tr are homogeneous Then X is smooth at p if and mly if the rank of the rx(n+1) Jacobian materix (dhe (P)) ij is at least n-dimpX. In fact, it must agree with n-dempX. . Not aly Xon = X is open, but we have : Theorem 1: X sm EX is not empty. Furthermore, it is dense in X. Yaroh: It is enough to show this for X an ineducible quasi-attime variety Claim 1: We can assum that X is affine SF/ Write ma open affire cover of the micty X: $X = U_1 \cup \cdots \cup U_S.$ Then $X_{sm} \cap U_i = (U_i)_{sm} \forall i$. If (Ui) so EU; is me-empty, then so is Xsm. . It (Ui) som is donse in Ui, then X son = U(X son NUi) is dense in X. Claimz: We can assume that X is an ineducible quasi-affim milty 34/ By Claim, we can assume X is a think. If X = X, U... UXs is inclucible decomposition, then the condition "Ox, p is a domain if re X son" (Proposition 2 338.1) Tus $X_{sm} = \bigcup_{j=1}^{U} \left(X_{j} \setminus \bigcup_{i \neq j} X_{i} \right)_{sm}$ Wj E Xj is often in Xj incl attine

 $= W_{j}$ so W_{j} is an incorrectle quasi-attine variety since $(W_{j})_{sn} \subseteq W_{j}$ is often by proposition, then $(W_{j})_{sn} \neq \phi$ would say $(W_{j})_{sn}$ dense in X_{j} . Thus $X_{sn} \neq \phi$ & X_{sn} is dense in X.

Assume X is ineducible quasi-effine. To show $X_{sm} \neq \emptyset$, it is month to show it for any Y ineducible limited to X.

By Lemma 1 kelow, we can peek such Y to be an invaducible hypersurface and
$$A^{d+1}$$

is $Y = V(F)$ for some $F \in K[Y_1,...,Y_d]$ inducible
To this entiting $Tac(F, g)$ has eige $(x, d = x, ts, nack is 1 unders)$
 $F(g) = \frac{SF}{3Y_1}(g) = \dots = \frac{SF}{3Y_n}(g)$
Thus $Y_{sm} = \phi$ (m) $\frac{SF}{3Y_1} \in CF> V(s), \dots, d$
But if $dag_{Y_1}E = di$, then $\frac{SF}{3Y_1} = 0$ or $\log \frac{SF}{3Y_1} = d_1 - 1$.
Therefore $\frac{SF}{3Y_1} \in CF> V(g) \Rightarrow \frac{SF}{3Y_1} = 0$ if i
This can also happen if clark $K = p > 0$ a $F \in K[Y_1, \dots, Y_n]$
Since $\overline{K} = K$, then K is particle a $F \in K[Y_1, \dots, Y_n]$ is equivalent to the
condition that $F = g^{f}$ for some $g \in K[Y_1, \dots, Y_n]$. This cannot happen if F is
invariable
Lemma 1. Every conducible of fire vanishy, for iden the foundation field $k = K(X)$, which is a
field entering $(ie = V(F))$
Show: $\overline{K} = K$ X inducible of fire vanishy. Consider the foundation field $k = K(X)$, which is a
field entering of $\overline{K} = K$. Turthomore to $\log_{10} K = d < \infty$.
 $\frac{Md}{2}$: it is forming generated one K is separable
for $K(y_1, \dots, y_d)$ a finite (i.e., $\frac{1}{4}$ is separable one K)
 $3F$ be lemma a below
Pick sum basis $3 = 4k (3 + \dots + y_d) F(d)$. Then
 $k \cong K(y_1, \dots, y_d) F(d)$, we can give an
 $K(y_1, \dots, y_d)$ is f in the fire $K(y_1, \dots, y_d) F(d)$. Then
 $k \cong K(y_1, \dots, y_d) = K(y_1, \dots, y_d) F(d)$. Then
 $k \cong K(y_1, \dots, y_d) = f$ is isocheckele. Then $Y = V(F) \subseteq A^{d+1}$ satisfies
 $F(K(Y_1, \dots, Y_d), f) = F$ is isocheckele. Then $Y = V(F) \subseteq A^{d+1}$ satisfies
 $F(K(Y_1, \dots, Y_d), f) = F$ is isocheckele. Then $Y = V(F) \subseteq A^{d+1}$ satisfies
 $F(K(Y_1, \dots, Y_d), f) = F$ is isocheckele. Then $Y = V(F) \subseteq A^{d+1}$ satisfies
 $F(K(Y_1, \dots, Y_d), f) = F$ is isocheckele. Then $Y = V(F) \subseteq A^{d+1}$ satisfies
 $F(K(Y_1, \dots, Y_d), f) = F$ is isocheckele. Then $Y = V(F) \subseteq A^{d+1}$ satisfies
 $F(K(Y_1, \dots, Y_d), f) = F$ is isocheckele. Then $Y = V(F) \subseteq A^{d+1}$ satisfies
 $F(K(Y_1, \dots, Y_d), f) = F$ is isocheckele. Then $Y = V(F) \subseteq A^{d+1}$ satisfies

 $|K(Y) = Quot (M(Y), ..., YI, C)/(F)) = Quot (IK(Y)..., YN)(C)/(F)) \simeq K = IK(X)$ Thus, X & Y are binational to each other by Corollary 3 \$11.2.

Lemma 2: IF K is a period half (id day K=0 or day K=pro a K(K)), and FIK
is a finitely generated extension, then there exists a transcendental basis
$$\{x_1, \dots, x_d\}$$

of FIK s.t. F is separable a first or, $K(x_1, \dots, x_d)$.
Proof. If day K=0, there is urthing to do (all extensions are separable). Indeed,
any transcendental basis $\{x_1, \dots, x_d\}$ of FIK works because $\{k\}$ $K(x_1, \dots, x_d)$ is
dependent a finitely generated, then if much be finite or atl.
. Next, assume day $K = p > 0$ a civite $F = K(x_1, \dots, x_M)$. We can yield a transcendented
basis by FIK among $\{x_1, \dots, x_M\}$. Up to accelering, we cannow $\{x_1, \dots, x_d\}$ is such
transcendented basis. Furthermare, assume $\{x_{d+1}, \dots, x_s\}$ can use example $\{x_1, \dots, x_d\}$ is such
transcendented basis. Furthermare, assume $\{x_{d+1}, \dots, x_s\}$ can use example $\{x_{d+1}, \dots, x_d\}$
order as $\{x_{d+1}, \dots, x_m\}$ or . We provide by induction $m \leq$.
. If s=0, we are does.
. Otherwise, since x_{d+1} is not separable over L , \exists $f \in L[t]$ ineducible s.t.
 $f \in L[t^T] = F(x_{d+1}) = 0$.
. Pick $u \in K(x_1, \dots, x_d)$ is $g = uf \in K[x_1, \dots, x_n, t^T]$, is ineducible $s_{2}(x_{d+1})$.
. Much arous by cost-addiction. If $\frac{2s}{d+1} = \dots = \frac{2t}{d+1} = 0$, then $g \in K[x_1^T, \dots, x_d^T, t^T]$.
. Since K is prefect, $|K=K|$ hence $g = h^0$ with $h \in K[x_1, \dots, x_d, t]$. This
counse has predicting the variables, we assume $i=d$. Thus, x_d is algebraic a separable
. After adabating the variables, we assume $i=d$. Thus, x_d is algebraic a separable
. $K(x_1, \dots, x_{d-1}, x_{d+1})$.
. p_{E} and K .

Thus $\{x_1, \dots, x_{d-1}, x_{d+1}\}$ is a transcendential basis for $F \mid K$. • X_j is sup over $K(x_1, \dots, x_d)$ for $j \ge s+1 \implies x_j$ is repeable over $K(x_1, \dots, x_{d-1}, x_{d+1})$ (because FIK(x,...x_{d+1}) is repeable & x_d is up. open IK(x,...x_{d-1}, x_{d+1}).) Thus, swapping x_d with x_{d+1} produces < s-1-d unseparable michbles. By inductive hypothesis, we can swap these elements with some of 3x,...x_{d-1}, x_{d+1}; to produce the desired transcendented tasis

Throughout, we assume
$$X \subseteq A^n$$
 is an attime variety $* \mathbb{K} = \mathbb{K}$
Pick $f_1, \dots, f_r \in O(X)$ $*$ set $U = X \setminus V(f_1, \dots, f_r) \in X$ (open).
This defines a map $f : U \longrightarrow \mathbb{R}^{r-1}$
 $\times \longmapsto [f_1(x) : \dots : f_r(x)]$

By constantion, E is a negative morphism between varieties. (Note: U can be \emptyset) . Consider the graph of E:

$$\int_{\underline{F}}^{1} = \Im(x, \underline{F}(x)) : x \in U \} \subseteq U \times \mathcal{H}^{-1}$$

By Proposition z (1) \$25.2, $\Gamma_{\underline{F}}$ is closed in $\bigcup X \mathbb{R}^{r-1}$, but not necessarily in $X \times \mathbb{R}^{r-1}$ Definition: $X := \overline{\Gamma_{\underline{F}}} \subseteq X \times \mathbb{R}^{r-1}$ is called the blow-up of X at $F_1, \dots, F_{\underline{F}}$. Q: What are the defining equations of X? A: NOT easy! A partial list of equations will be given next time. Remark: $(\bigcirc We$ have a natural map $X = \overline{\Gamma_{\underline{F}}} \xrightarrow{P_1} X$ we call it the blow-up map Usually, we write it as $TU: X \longrightarrow X$. (2) $X \xrightarrow{T} X$ is for an invertice of the second in the In particular, if X is inclucible, with $I(X) = \langle S_{11}, ..., S_{N-2} \rangle$, of dimension d, then we can Take $U = X_{SM} = X \setminus V(F_{1}, ..., F_{C})$ where $3F_{1}, ..., F_{C}F_{1}$ is the left of all $(n-3) \times (n-d)$ minors of $Jac(S_{1}, P)$. We have $X_{SM} \subseteq \widetilde{X}$. Tenthermore, X_{SM} because dense in \widetilde{X} by the following accult. Lemma 3: IF X is inclucible a $X \notin V(F_{1}, ..., F_{C})$, then $\widetilde{X} \xrightarrow{\mathbb{T}} X$ is a binational map with $\Gamma_{F} \xrightarrow{\mathbb{T}} U$ dense opens in $\widetilde{X} dX$, neperturbely \underline{SubF} : Since $X \notin V(F_{1}, ..., F_{C})$, then $U = X \setminus V(F_{1}, ..., F_{C})$ is open a non-compty in X. But X is inclucible, hence U is dense in X. In this case, $U \cong \Gamma_{\underline{F}} \subseteq \widetilde{X}$ is also open. Since $\Gamma_{\underline{F}}$ is dense in $\overline{\Gamma}_{\underline{F}} = \widetilde{X}$ by definition, so is U. We conclude $\operatorname{TE}: \widetilde{X} \longrightarrow X$ is a binational map, noticiting To an isomorphism between the dense opens $\Gamma_{\underline{F}} \in U$, neglectively.